Logo Taplio

Taplio

Andreas Horn's Linkedin Analytics

Get the Linkedin stats of Andreas Horn and many LinkedIn Influencers by Taplio.

Want detailed analytics of your Linkedin Account? Try Taplio for free.

Andreas Horn

open on linkedin

Innovation is not just about creating the future, but about shaping it with purpose and imagination. [All opinions are my own and don't represent my employer.]

Check out Andreas Horn's verified LinkedIn stats (last 30 days)

Followers
126,309
Posts
20
Engagements
66,061
Likes
55,227

Andreas Horn's Best Posts (last 30 days)

Use Taplio to search all-time best posts


Anthropic ๐—ท๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—ฎ ๐—ฑ๐—ฒ๐—ป๐˜€๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐—ฝ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ผ๐—ป ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—ฒ๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฝ๐—ฎ๐—ฐ๐—ธ๐—ฒ๐—ฑ ๐˜„๐—ถ๐˜๐—ต ๐—ฒ๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐—ฑ๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜๐˜€: โฌ‡๏ธ Not just marketing, BUT a real, practical blueprint for developers and teams building AI agents that actually work. It explains how Claude Code (tool for agentic coding) can function as a software developer: writing, reviewing, testing, and even managing Git workflows autonomously. BUT in my view: The principles and patterns described in this document are not Claude-specific. You can apply them to any coding agent โ€” from OpenAIโ€™s Codex to Goose, Aider, or even tools like Cursor and GitHub Copilot Workspace. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ 7 ๐—ธ๐—ฒ๐˜† ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ฏ๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€” ๐˜๐—ต๐—ฎ๐˜ ๐˜„๐—ผ๐—ฟ๐—ธ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐˜„๐—ผ๐—ฟ๐—น๐—ฑ: โฌ‡๏ธ 1. ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป โ‰  ๐—ท๐˜‚๐˜€๐˜ ๐—ฝ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด โžœ Itโ€™s not about clever prompts. Itโ€™s about building structured workflows โ€” where the agent can reason, act, reflect, retry, and escalate. Think of agents like software components: stateless functions wonโ€™t cut it. 2. ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐—ถ๐˜€ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ โžœ The way you manage and pass context determines how useful your agent becomes. Using summaries, structured files, project overviews, and scoped retrieval beats dumping full files into the prompt window. 3. ๐—ฃ๐—น๐—ฎ๐—ป๐—ป๐—ถ๐—ป๐—ด ๐—ถ๐˜€๐—ปโ€™๐˜ ๐—ผ๐—ฝ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น โžœ You canโ€™t expect an agent to solve multi-step problems without an explicit process. Patterns like plan > execute > review, tool use when stuck, or structured reflection are necessary. And they apply to all models, not just Claude. 4. ๐—ฅ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜๐—ผ๐—ผ๐—น๐˜€ โžœ Shell access. Git. APIs. Tool plugins. The agents that actually get things done use tools โ€” not just language. Design your agents to execute, not just explain. 5. ๐—ฅ๐—ฒ๐—”๐—ฐ๐˜ ๐—ฎ๐—ป๐—ฑ ๐—–๐—ผ๐—ง ๐—ฎ๐—ฟ๐—ฒ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€, ๐—ป๐—ผ๐˜ ๐—บ๐—ฎ๐—ด๐—ถ๐—ฐ ๐˜๐—ฟ๐—ถ๐—ฐ๐—ธ๐˜€ โžœ Donโ€™t just ask the model to โ€œthink step by step.โ€ Build systems that enforce that structure: reasoning before action, planning before code, feedback before commits. 6. ๐——๐—ผ๐—ปโ€™๐˜ ๐—ฐ๐—ผ๐—ป๐—ณ๐˜‚๐˜€๐—ฒ ๐—ฎ๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐˜† ๐˜„๐—ถ๐˜๐—ต ๐—ฐ๐—ต๐—ฎ๐—ผ๐˜€ โžœ Autonomous agents can cause damage โ€” fast. Define scopes, boundaries, fallback behaviors. Controlled autonomy > random retries. 7. ๐—ง๐—ต๐—ฒ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ถ๐˜€ ๐—ถ๐—ป ๐—ผ๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โžœ A good agent isnโ€™t just a wrapper around an LLM. Itโ€™s an orchestrator: of logic, memory, tools, and feedback. And if youโ€™re scaling to multi-agent setups โ€” orchestration is everything. Check the comments for the original material! Enjoy! Save ๐Ÿ’พ โžž React ๐Ÿ‘ โžž Share โ™ป๏ธ & follow for everything related to AI Agents!


2k

๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐˜๐—ต๐—ฒ ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐—œ ๐˜„๐—ถ๐˜€๐—ต ๐—œ ๐—ต๐—ฎ๐—ฑ ๐˜„๐—ต๐—ฒ๐—ป ๐—œ ๐˜€๐˜๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฑ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€! โฌ‡๏ธ Built together with Rakesh Gohel (aka Mr. AI Agent) โ€” and now yours! We broke it down into 7 essential steps to go from zero to scalable, production-ready agents: 1. ๐—ฃ๐—ถ๐—ฐ๐—ธ ๐—ฎ๐—ป ๐—Ÿ๐—Ÿ๐—  โžœ Choose a model that reasons well, supports step-by-step logic, and gives consistent outputs. Tip: Llama, Claude Opus, or Mistral are great for open-weight setups. 2. ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐˜๐—ต๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜โ€™๐˜€ ๐—Ÿ๐—ผ๐—ด๐—ถ๐—ฐ โžœ Should it reflect before answering? Plan or act directly? What if it gets stuck? Start simple with ReAct or Planโ€“thenโ€“Execute. Donโ€™t overcomplicate. 3. ๐—ช๐—ฟ๐—ถ๐˜๐—ฒ ๐—ถ๐˜๐˜€ ๐—ข๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐—œ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€ โžœ Define how it should respond, when to use tools, and what formats to reply in. Reusable prompt templates are your friend here โ€” they scale better than hardcoded flows. 4. ๐—”๐—ฑ๐—ฑ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† โžœ LLMs forget. Your agent canโ€™t. Use sliding windows, summaries, or memory frameworks like MemGPT or ZepAI to persist key facts and long-term context. 5. ๐—–๐—ผ๐—ป๐—ป๐—ฒ๐—ฐ๐˜ ๐—ง๐—ผ๐—ผ๐—น๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฃ๐—œ๐˜€ โžœ Let the agent do things: query data, call systems, fetch information. Just be explicit about what tools exist and when to use them. 6. ๐—š๐—ถ๐˜ƒ๐—ฒ ๐—ถ๐˜ ๐—ฎ ๐—๐—ผ๐—ฏ Bad prompt: โ€œBe helpful.โ€ Good prompt: โ€œSummarize customer feedback and suggest improvements.โ€ Narrow scope wins. The tighter the job, the smarter the agent. 7. ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฒ ๐˜๐—ผ ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ง๐—ฒ๐—ฎ๐—บ๐˜€ โžœOne gathers data. One interprets. One formats results. You donโ€™t need a super-agent. You need a smart team โ€” built for specific tasks. ๐—ข๐—ป๐—ฒ ๐—ถ๐—บ๐—ฎ๐—ด๐—ฒ. ๐—ฆ๐—ฒ๐˜ƒ๐—ฒ๐—ป ๐˜€๐˜๐—ฒ๐—ฝ๐˜€. ๐—œ๐—ป๐—ณ๐—ถ๐—ป๐—ถ๐˜๐—ฒ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€! From solo agents to orchestration-ready systems โ€” this is how you scale with intent. Image below. Save it. Use it. You can find more info in the comments! (Note: The entire roadmap is not exhaustive and can differ according to different use cases) โ™ป๏ธ Share this to help your network level up.


    2k

    Boston Consulting Group (BCG) ๐—ท๐˜‚๐˜€๐˜ ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—น๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ฃ๐—ข๐—ฉ ๐—ผ๐—ป ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—ฃ๐—ฟ๐—ผ๐˜๐—ผ๐—ฐ๐—ผ๐—น (๐— ๐—–๐—ฃ)! The paper unpacks how autonomous agents are evolving, where they are already delivering real value, and why protocols like MCP (Model Context Protocol) and A2A (Agent-to-Agent Communication) are ๐—˜๐—ฆ๐—ฆ๐—˜๐—ก๐—ง๐—œ๐—”๐—Ÿ to scaling them securely and reliably across enterprises. If you are looking for an insightful read on why the real disruptive technology isn't AI, but AI Agents, this is a great paper! ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐˜€๐—ฒ๐˜ƒ๐—ฒ๐—ป ๐—ธ๐—ฒ๐˜† ๐˜๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€: 1. ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—”๐—ฟ๐—ฒ ๐— ๐—ผ๐˜ƒ๐—ถ๐—ป๐—ด ๐—™๐—ฟ๐—ผ๐—บ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜ ๐˜๐—ผ ๐—ฅ๐—ฒ๐—ฎ๐—น๐—ถ๐˜๐˜†: โžœ Early deployments are already delivering 30โ€“90% improvements in speed, productivity, and cost across coding, compliance, and supply chain domains. 2. ๐— ๐—–๐—ฃ ๐—œ๐˜€ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—•๐—ฎ๐—ฐ๐—ธ๐—ฏ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: โžœ The Model Context Protocol (MCP) is the new open standard adopted by Anthropic, OpenAI, Microsoft, Google, and Amazon to expose tools, prompts, and resources reliably. 3. ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐˜€ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—ฅ๐—ฎ๐—ฝ๐—ถ๐—ฑ๐—น๐˜†: โžœ Agents today can automate tasks up to one hour long โ€” and this limit is doubling every seven months, pushing toward multi-day autonomous workflows by the end of the decade. 4. ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ ๐— ๐˜‚๐˜€๐˜ ๐—•๐—ฒ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†-๐—™๐—ถ๐—ฟ๐˜€๐˜: โžœ Security challenges grow as agents gain system access. OAuth, RBAC, permission isolation, eval-driven development, and real-time monitoring are mandatory to deploy agents safely. 5. ๐—ง๐—ต๐—ฒ ๐—ฅ๐—ถ๐˜€๐—ฒ ๐—ผ๐—ณ ๐—”๐—ด๐—ฒ๐—ป๐˜-๐—ข๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ๐˜€: โžœ Platforms like Azure Foundry, Vertex AI, Bedrock Agents, and Lindy are positioning themselves as the orchestration layer to create, manage, and scale enterprise agent ecosystems. 6. ๐—™๐—ฟ๐—ผ๐—บ ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€ ๐˜๐—ผ ๐—™๐˜‚๐—น๐—น๐˜† ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: โžœ Enterprises are shifting from prompt chaining (rigid workflows) to fully autonomous agents capable of observing, reasoning, and acting dynamically based on real-world feedback. 7. ๐— ๐—–๐—ฃ ๐—ฎ๐—ป๐—ฑ ๐—”2๐—” ๐—ช๐—ถ๐—น๐—น ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ ๐˜๐—ต๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—˜๐—ฐ๐—ผ๐—ป๐—ผ๐—บ๐˜†: โžœ MCP connects agents to tools and data. A2A (Agent-to-Agent communication) will enable agents to negotiate, collaborate, and coordinate across systems โ€” forming true multi-agent networks. The agent economy is currently buildโ€” with real protocols, real deployments, and real technical foundations. Understanding it today means shaping the competitive advantage of tomorrow! You can download the document below! ENJOY!


    1k

    ๐——๐—ผ๐—ปโ€™๐˜ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ ๐—ฎ๐—ป ๐—”๐—œ ๐—ฆ๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜† ๐˜„๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐—น๐—น๐—ฒ๐—น ๐—ฝ๐—ฎ๐˜๐—ต๐—ถ๐—ป๐—ด ๐˜†๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜†! โฌ‡๏ธ And donโ€™t build your AI strategy in pure isolation. It seems to me that there are more and more enterprise AI roadmaps or AI-first company roadmaps. And yes, many of these strategies are well-informed, ambitious, and technically promising. But one foundational issue keeps surfacing: a lack of readiness in the underlying data infrastructure. AI โ€” whether applied or generative โ€” cannot deliver value without a solid, accessible, and trusted data ecosystem. And yet, many organizations are still underinvesting in this area, treating data as a side concern rather than the foundation it is. If your data landscape is fragmented, inaccessible, or of poor quality, no AI model โ€” no matter how advanced โ€” will produce meaningful results. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฟ๐—ฒ๐—ฒ ๐—ฐ๐—ผ๐—ป๐—ฐ๐—ฟ๐—ฒ๐˜๐—ฒ ๐˜€๐˜๐—ฒ๐—ฝ๐˜€ ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ๐˜€ ๐—ฐ๐—ฎ๐—ป ๐˜๐—ฎ๐—ธ๐—ฒ ๐˜๐—ผ ๐—ฏ๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—ฎ๐—น๐—ถ๐—ด๐—ป ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ฎ๐—ป๐—ฑ ๐—”๐—œ ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐—ถ๐—ฒ๐˜€: โฌ‡๏ธ 1. ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฎ๐—ป ๐—ถ๐—ป๐˜๐—ฒ๐—ด๐—ฟ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ด๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น. โžœ Establish a unified governance framework that spans both data management and AI oversight. This ensures consistency across how data is acquired, maintained, and used โ€” enabling AI systems to operate transparently, compliantly, and effectively. 2. ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜ ๐—ถ๐—ป ๐—ฎ ๐—ฑ๐—ฎ๐˜๐—ฎ-๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฐ๐˜‚๐—น๐˜๐˜‚๐—ฟ๐—ฒ. โžœ Technology alone wonโ€™t fix fragmented data. Organizations must embed data literacy across functions, prioritize clean and reusable data assets, and ensure cross-functional teams understand the strategic value of data in AI development. 3. ๐—”๐—น๐—ถ๐—ด๐—ป ๐—”๐—œ ๐—ฎ๐—ป๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜๐—ฒ๐—ฎ๐—บ๐˜€ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ ๐˜€๐—ต๐—ฎ๐—ฟ๐—ฒ๐—ฑ ๐—ด๐—ผ๐—ฎ๐—น๐˜€. โžœ Too often, AI initiatives are launched without proper collaboration with data teams. Ensure alignment through shared KPIs, integrated project planning, and clear ownership over the full data-to-AI lifecycle. Take for example GenAI: Both fine-tuning large models and implementing retrieval-augmented generation (RAG) approaches rely on the same prerequisites: high-quality, accessible, well-governed data. ๐—˜๐—ถ๐˜๐—ต๐—ฒ๐—ฟ ๐˜„๐—ฎ๐˜†, ๐—ป๐—ผ ๐—ด๐—ผ๐—ผ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ = ๐—ป๐—ผ ๐—ด๐—ผ๐—ผ๐—ฑ ๐—”๐—œ. ๐—”๐—œ ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜† ๐—ถ๐˜€ ๐—ป๐—ผ๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ ๐˜๐—ฒ๐—ฐ๐—ต ๐—ถ๐—ป๐—ถ๐˜๐—ถ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ โ€” ๐—ถ๐˜โ€™๐˜€ ๐—ฏ๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐˜๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป. ๐—”๐—ป๐—ฑ ๐—ถ๐˜ ๐—บ๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐˜€๐˜ ๐—ผ๐—ป ๐—ฎ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ถ๐—ป๐—ณ๐—ฟ๐—ฎ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ ๐˜๐—ต๐—ฎ๐˜โ€™๐˜€ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ฒ๐—ฑ ๐˜๐—ผ ๐˜€๐—ฐ๐—ฎ๐—น๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—ถ๐˜. ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ป๐—ผ๐˜ ๐—ถ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐—ฏ๐—ผ๐˜๐—ต ๐—ฎ๐˜ ๐˜๐—ต๐—ฒ ๐˜€๐—ฎ๐—บ๐—ฒ ๐˜๐—ถ๐—บ๐—ฒ, ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ป๐—ผ๐˜ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ถ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜. ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฏ๐—ผ๐˜๐—ต ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐—ถ๐—ฒ๐˜€ ๐—ถ๐—ป ๐˜€๐˜†๐—ป๐—ฐ. ๐—ง๐—ต๐—ฎ๐˜โ€™๐˜€ ๐˜„๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ถ๐˜€ ๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜๐—ฒ๐—ฑ!


      1k

      ๐—›๐—ผ๐˜„ ๐—œ๐˜ ๐—ช๐—ผ๐—ฟ๐—ธ๐˜€: ๐—ง๐—ต๐—ฒ ๐—ฅ๐—˜๐—”๐—Ÿ ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐—ฒ๐˜๐˜„๐—ฒ๐—ฒ๐—ป ๐—”๐—œ ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€, ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€, ๐—ฎ๐—ป๐—ฑ ๐— ๐—–๐—ฃ. โฌ‡๏ธ This image illustrates the difference with surprising clarity. Letโ€™s break it down: 1. (๐—”๐—œ) ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€: ๐—™๐—ผ๐—น๐—น๐—ผ๐˜„๐˜€ ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ ๐—ถ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€ โžœ An AI workflow is like a recipe. It runs in a fixed order: An email arrives โ†’ the content is summarized โ†’ a task is created โ†’ the plan is sent via Slack. Itโ€™s linear, predictable, and doesnโ€™t adapt. No decisions. No context-awareness. Just automation. 2. ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: ๐—”๐—ฐ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ถ๐˜€๐—ต ๐—ด๐—ผ๐—ฎ๐—น๐˜€ ๐—ฎ๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€๐—น๐˜† โžœ An AI agent doesnโ€™t need step-by-step instructions. You give it a goal โ€” for example, โ€œPlan my dayโ€ โ€” and it figures out how to get there. It accesses tools, checks your calendar, moves meetings, finds focus time, and adapts the schedule based on what matters. It makes decisions based on context โ€” not just predefined logic. 3. ๐— ๐—–๐—ฃ: ๐—˜๐—ป๐—ฎ๐—ฏ๐—น๐—ฒ๐˜€ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐—ฎ๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐˜† โžœ The Model Context Protocol (MCP) is the key enabler. It gives the agent secure, real-time access to apps like Calendar, Notion, Slack, and Perplexity. This unlocks cross-app coordination, memory, and adaptive behavior. Not just running commands โ€” but reasoning across systems. ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€ ๐—ฎ๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฒ ๐˜€๐˜๐—ฒ๐—ฝ๐˜€ โžœ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ฝ๐˜‚๐—ฟ๐˜€๐˜‚๐—ฒ ๐—ผ๐˜‚๐˜๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€ โžœ ๐—”๐—ป๐—ฑ ๐— ๐—–๐—ฃ ๐—ถ๐˜€ ๐˜๐—ต๐—ฒ ๐—ณ๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜๐—ต๐—ฎ๐˜ ๐—บ๐—ฎ๐—ธ๐—ฒ๐˜€ ๐˜๐—ต๐—ฒ ๐˜€๐—ต๐—ถ๐—ณ๐˜ ๐—ฝ๐—ผ๐˜€๐˜€๐—ถ๐—ฏ๐—น๐—ฒ!


      1k

      ๐—ง๐—ต๐—ถ๐—ป๐—ธ๐—ถ๐—ป๐—ด ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—ฎ๐—ป ๐—”๐—œ ๐—ฆ๐—ง๐—ฅ๐—”๐—ง๐—˜๐—š๐—ฌ ๐—ณ๐—ผ๐—ฟ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐˜†? This is one of the clearest roadmap (Gartner) youโ€™ll ever get to build your own: โฌ‡๏ธ 1. ๐—”๐—œ ๐—ฆ๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜† ๐—š๐—ผ๐—ฎ๐—น ๐—ฆ๐—ฒ๐˜๐˜๐—ถ๐—ป๐—ด (๐—ง๐—ต๐—ฒ ๐—–๐—ผ๐—ฟ๐—ฒ): This is your strategic north star โ€” where you define your ambition and guide every downstream decision. โ€ข Drivers โ†’ Why are you doing this? Clarifies the business/tech forces pushing AI forward. โ€ข Vision โ†’ Where is this going long-term? Provides inspiration and direction across teams. โ€ข Alignment โ†’ Is everyone rowing in the same direction? Ensures synergy. โ€ข Risks โ†’ What could go wrong? Sets the baseline for governance and responsible AI. โ€ข Adoption โ†’ Who will actually use it? Anticipates friction and enables change management. ๐Ÿ“ This is the master blueprint โ€” Without this, youโ€™re just building disconnected POCs. No clear target = no impact. 2. ๐—”๐—น๐—ถ๐—ด๐—ป๐—ฒ๐—ฑ ๐—ฆ๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐—ถ๐—ฒ๐˜€ (๐— ๐—ฎ๐—ธ๐—ฒ ๐—œ๐˜ ๐—™๐—ถ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€): This is where your AI ambition meets the reality of your broader enterprise. โ€ข Business Strategy โ†’ AI must serve the core business goals โ€” not exist as a side project. โ€ข IT Strategy โ†’ Ensures your infrastructure can support scalable AI. โ€ข R&D Strategy โ†’ Aligns innovation with AI capabilities and funding priorities. โ€ข D&A Strategy โ†’ Without data strategy, no AI strategy will scale. โ€ข (...) Strategy โ†’ ... ๐Ÿ“ Connect AI to the real levers of power in your organization โ€” so it doesnโ€™t get siloed or shut down. 3. ๐—”๐—œ ๐—ข๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐— ๐—ผ๐—ฑ๐—ฒ๐—น (๐— ๐—ฎ๐—ธ๐—ฒ ๐—œ๐˜ ๐—ฅ๐—ฒ๐—ฎ๐—น): Once you know what you want to do, this defines how youโ€™ll deliver it at scale. โ€ข Governance โ†’ Sets up ethical, legal, and operational oversight from day one. โ€ข Data โ†’ Builds the pipelines and quality foundations for smart AI. โ€ข Engineering โ†’ Equips you with the technical backbone for deployment. โ€ข Technology โ†’ Selects the right tools, platforms, and architecture. โ€ข Literacy โ†’ Ensures the workforce can actually work with AI. ๐Ÿ“ This is your AI engine room โ€” without it, strategy stays theoretical. 4. ๐—”๐—œ ๐—ฃ๐—ผ๐—ฟ๐˜๐—ณ๐—ผ๐—น๐—ถ๐—ผ (๐——๐—ฒ๐—น๐—ถ๐˜ƒ๐—ฒ๐—ฟ ๐˜๐—ต๐—ฒ ๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ): Now itโ€™s time to build โ€” but with structure and intent. โ€ข Ideation/Prioritization** โ†’ Surfaces the best use cases, aligned with strategy. โ€ข Use Cases โ†’ Translates goals into concrete applications and MVPs. โ€ข Change Management โ†’ Drives real adoption beyond pilots. โ€ข Value/Cost Management โ†’ Measures success and ensures scalability. ๐Ÿ“ This is where value is realized โ€” where strategy finally touches the customer and the business. ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—”๐—œ ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜† ๐˜€๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐˜„๐—ผ๐—ฟ๐—ธ ๐—น๐—ถ๐—ธ๐—ฒ ๐˜†๐—ผ๐˜‚๐—ฟ ๐˜๐—ฒ๐—ฐ๐—ต ๐˜€๐˜๐—ฎ๐—ฐ๐—ธ: ๐—™๐˜‚๐—น๐—น๐˜† ๐—ถ๐—ป๐˜๐—ฒ๐—ด๐—ฟ๐—ฎ๐˜๐—ฒ๐—ฑ, ๐—ฒ๐—ป๐—ฑ-๐˜๐—ผ-๐—ฒ๐—ป๐—ฑ ๐—ฎ๐—ป๐—ฑ ๐—ฏ๐˜‚๐—ถ๐—น๐˜ ๐˜๐—ผ ๐˜€๐—ฐ๐—ฎ๐—น๐—ฒ! ๐—™๐—ผ๐˜‚๐—ป๐—ฑ ๐˜๐—ต๐—ถ๐˜€ ๐˜‚๐˜€๐—ฒ๐—ณ๐˜‚๐—น? Here you can find edge-level insights on AI agents, automation workflows, and enterprise-ready AI stacks. Fully free! Subscribe here: https://lnkd.in/dbf74Y9E


      1k

      ๐—ช๐—ฒ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐˜๐—ผ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—ฏ๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ ๐—ฐ๐—ฎ๐—น๐—น๐—ถ๐—ป๐—ด ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฎ๐—ป โ€œ๐—Ÿ๐—Ÿ๐— .โ€ โฌ‡๏ธ In 2025, the AI landscape has evolved far beyond just large language models. Knowing which model to use for your specific use case โ€” and how โ€” is becoming a strategic advantage. Letโ€™s break down the 8 most important model types and what theyโ€™re actually built to do: โฌ‡๏ธ 1. ๐—Ÿ๐—Ÿ๐—  โ€“ ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Your ChatGPT-style model. Handles text, predicts the next token, and powers 90% of GenAI hype. ๐Ÿ›  Use case: content, code, convos. 2. ๐—Ÿ๐—–๐—  โ€“ ๐—Ÿ๐—ฎ๐˜๐—ฒ๐—ป๐˜ ๐—–๐—ผ๐—ป๐˜€๐—ถ๐˜€๐˜๐—ฒ๐—ป๐—ฐ๐˜† ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Lightweight, diffusion-style models. Fast, quantized, and efficient โ€” perfect for real-time or edge deployment. ๐Ÿ›  Use case: image generation, optimized inference. 3. ๐—Ÿ๐—”๐—  โ€“ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Where LLM meets planning. Adds memory, task breakdown, and intent recognition. ๐Ÿ›  Use case: AI agents, tool use, step-by-step execution. 4. ๐— ๐—ผ๐—˜ โ€“ ๐— ๐—ถ๐˜…๐˜๐˜‚๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ โ†’ One model, many minds. Routes input to the right โ€œexpertโ€ model slice โ€” dynamic, scalable, efficient. ๐Ÿ›  Use case: high-performance model serving at low compute cost. 5. ๐—ฉ๐—Ÿ๐—  โ€“ ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Multimodal beast. Combines image + text understanding via shared embeddings. ๐Ÿ›  Use case: Gemini, GPT-4o, search, robotics, assistive tech. 6. ๐—ฆ๐—Ÿ๐—  โ€“ ๐—ฆ๐—บ๐—ฎ๐—น๐—น ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Tiny but mighty. Designed for edge use, fast inference, low latency, efficient memory. ๐Ÿ›  Use case: on-device AI, chatbots, privacy-first GenAI. 7. ๐— ๐—Ÿ๐—  โ€“ ๐— ๐—ฎ๐˜€๐—ธ๐—ฒ๐—ฑ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ The OG foundation model. Predicts masked tokens using bidirectional context. ๐Ÿ›  Use case: search, classification, embeddings, pretraining. 8. ๐—ฆ๐—”๐—  โ€“ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ ๐—”๐—ป๐˜†๐˜๐—ต๐—ถ๐—ป๐—ด ๐— ๐—ผ๐—ฑ๐—ฒ๐—น โ†’ Vision model for pixel-level understanding. Highlights, segments, and understands *everything* in an image. ๐Ÿ›  Use case: medical imaging, AR, robotics, visual agents. Understanding these distinctions is essential for selecting the right model architecture for specific applications, enabling more effective, scalable, and contextually appropriate AI interactions. While these are some of the most prominent specialized AI models, there are many more emerging across language, vision, speech, and robotics โ€” each optimized for specific tasks and domains. LLM, VLM, MoE, SLM, LCM โ†’ GenAI LAM, MLM, SAM โ†’ Not classic GenAI, but critical building blocks for AI agents, reasoning, and multimodal systems ๐—œ ๐—ฒ๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—บ๐—ฒ๐—ฎ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ โ€” ๐—ถ๐—ป ๐—บ๐˜† ๐˜„๐—ฒ๐—ฒ๐—ธ๐—น๐˜† ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—ฌ๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ: https://lnkd.in/dbf74Y9E Kudos for the graphic goes to Generative AI !


      1k

      ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—ถ๐˜€ ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐˜๐—ต๐—ฒ ๐—ณ๐—ถ๐—ป๐—ฎ๐—ป๐—ฐ๐—ถ๐—ฎ๐—น ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ โ€” ๐—ฎ๐—ป๐—ฑ ๐—บ๐—ผ๐˜€๐˜ ๐—ฏ๐—ฎ๐—ป๐—ธ๐˜€ ๐—ฎ๐—ฟ๐—ฒ๐—ปโ€™๐˜ ๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜†! โฌ‡๏ธ At IBM, we just released a new report unpacking what happens when autonomous agents hit regulated industries (interesting read also for people from other industries) โ€” and why financial institutions must rethink governance, architecture, and control from the ground up. Agentic AI isnโ€™t some far-off vision: Itโ€™s already planning, executing, and escalating decisions โ€” across onboarding, fraud detection, loan approvals, compliance, and more. From the report, these 6 insights stand out:๏ธ โฌ‡๏ธ 1. ๐—Ÿ๐—ฒ๐—ด๐—ฎ๐—ฐ๐˜† ๐—ฐ๐—ผ๐—ป๐˜๐—ฟ๐—ผ๐—น๐˜€ ๐˜„๐—ผ๐—ปโ€™๐˜ ๐˜€๐˜‚๐—ฟ๐˜ƒ๐—ถ๐˜ƒ๐—ฒ ๐˜๐—ต๐—ฒ ๐˜€๐—ต๐—ถ๐—ณ๐˜: โžœ When agents start executing KYC flows, approving loans, or detecting fraud โ€” real-time governance becomes non-negotiable. The paper outlines 30+ control layers and guardrails needed before you go live. 2. ๐— ๐˜‚๐—น๐˜๐—ถ-๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ ๐—ถ๐—ป๐˜๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐—ฒ ๐—ฐ๐—ผ๐—ผ๐—ฟ๐—ฑ๐—ถ๐—ป๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฟ๐—ถ๐˜€๐—ธ. โžœ Principal agents orchestrate task agents and service agents in complex chains. One misaligned goal? You get drift, bias, or worse โ€” strategic deception. 3. ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐—ถ๐˜€ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ โ€” ๐—ฎ๐—ป๐—ฑ ๐—น๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†. โ†’ Unlike stateless systems, agentic AI remembers. It accumulates knowledge and can act on outdated or misaligned goals unless strict reset, audit, and expiration policies are in place, because financial institutions must adhere to strict data retention and usage policies 4. ๐—ง๐—ต๐—ฒ ๐—ฏ๐—ถ๐—ด๐—ด๐—ฒ๐˜€๐˜ ๐—ฟ๐—ถ๐˜€๐—ธ๐˜€? ๐——๐—ฒ๐—ฐ๐—ฒ๐—ฝ๐˜๐—ถ๐—ผ๐—ป, ๐—ฏ๐—ถ๐—ฎ๐˜€, ๐—ฎ๐—ป๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—บ๐—ถ๐˜€๐˜‚๐˜€๐—ฒ. โ†’ The report outlines chilling examples: agents hiding intentions, using personas that amplify bias, or misusing PII without oversight. The solution? Real-time monitoring, not post-hoc patching. 5. ๐—ง๐—ต๐—ฒ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐—ฒ๐—ฐ๐—ผ๐—ป๐—ผ๐—บ๐˜† ๐—ป๐—ฒ๐—ฒ๐—ฑ๐˜€ ๐—ฟ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ถ๐—ฒ๐˜€, ๐—ป๐—ผ๐˜ ๐—ฑ๐—ฎ๐˜€๐—ต๐—ฏ๐—ผ๐—ฎ๐—ฟ๐—ฑ๐˜€. โ†’ Every agent must be tracked like a microservice: with metadata, access rights, capabilities, and audit logs. Think of it as DevOps meets AI Governance. 6. ๐—–๐—ผ๐—บ๐—ฝ๐—น๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ถ๐˜€ ๐—ป๐—ผ ๐—น๐—ผ๐—ป๐—ด๐—ฒ๐—ฟ ๐—ฑ๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป. ๐—œ๐˜'๐˜€ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ. โ†’ โ€œCompliance by designโ€ isnโ€™t a nice-to-have โ€” itโ€™s the only way to deploy agents that regulators, auditors, and boards wonโ€™t shut down on day one. ๐—ง๐—ต๐—ฒ ๐—ณ๐˜‚๐—น๐—น ๐—ฝ๐—ฎ๐—ฝ๐—ฒ๐—ฟ ๐—ผ๐—ณ๐—ณ๐—ฒ๐—ฟ๐˜€ ๐—ฎ ๐—ฝ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—ฏ๐—น๐˜‚๐—ฒ๐—ฝ๐—ฟ๐—ถ๐—ป๐˜ ๐—ณ๐—ผ๐—ฟ ๐˜๐—ต๐—ผ๐˜€๐—ฒ ๐˜€๐—ฒ๐—ฟ๐—ถ๐—ผ๐˜‚๐˜€ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐˜€๐—ฐ๐—ฎ๐—น๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ถ๐—ป ๐—ณ๐—ถ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐—ฎ๐—น๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐—ถ๐—ป ๐—บ๐—ผ๐˜๐—ถ๐—ผ๐—ป โ€” ๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—ฐ๐—ต๐—ผ๐—ถ๐—ฐ๐—ฒ๐˜€ ๐˜„๐—ฒ ๐—บ๐—ฎ๐—ธ๐—ฒ ๐—ป๐—ผ๐˜„ ๐˜„๐—ถ๐—น๐—น ๐—ฑ๐—ฒ๐˜๐—ฒ๐—ฟ๐—บ๐—ถ๐—ป๐—ฒ ๐˜„๐—ต๐—ฒ๐˜๐—ต๐—ฒ๐—ฟ ๐˜„๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฑ ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฎ๐—ฐ๐˜ ๐˜๐—ผ ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—ฐ๐—ผ๐—ป๐˜€๐—ฒ๐—พ๐˜‚๐—ฒ๐—ป๐—ฐ๐—ฒ๐˜€. Full report and commentary in the comments. Enjoy!


      2k

      ๐—ข๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐— ๐—ข๐—ฆ๐—ง ๐—ฑ๐—ถ๐˜€๐—ฐ๐˜‚๐˜€๐˜€๐—ฒ๐—ฑ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป: ๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—ฝ๐—ถ๐—ฐ๐—ธ ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐—Ÿ๐—Ÿ๐—  ๐—ณ๐—ผ๐—ฟ ๐˜†๐—ผ๐˜‚๐—ฟ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ? The LLM landscape is booming and choosing the right LLM is now a business decision, not just a tech choice. One-size-fits-all? Forget it. Nearly all enterprises today rely on different models for different use cases and/or industry-specific fine-tuned models. Thereโ€™s no universal โ€œbestโ€ model โ€” only the best fit for a given task. The latest LLM landscape (see below) shows how models stack up in capability (MMLU score), parameter size and accessibility โ€” and the differences REALLY matter. ๐—Ÿ๐—ฒ๐˜'๐˜€ ๐—ฏ๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—ถ๐˜ ๐—ฑ๐—ผ๐˜„๐—ป: โฌ‡๏ธ 1๏ธโƒฃ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐—น๐—ถ๐˜€๐˜ ๐˜ƒ๐˜€. ๐—ฆ๐—ฝ๐—ฒ๐—ฐ๐—ถ๐—ฎ๐—น๐—ถ๐˜€๐˜: - Need a broad, powerful AI? GPT-4, Claude Opus, Gemini 1.5 Pro โ€” great for general reasoning and diverse applications. - Need domain expertise? E.g. IBM Granite or Mistral models (Lightweight & Fast) can be an excellent choice โ€” tailored for specific industries. 2๏ธโƒฃ ๐—•๐—ถ๐—ด ๐˜ƒ๐˜€. ๐—ฆ๐—น๐—ถ๐—บ: - Powerful, large models (GPT-4, Claude Opus, Gemini 1.5 Pro) = great reasoning, but expensive and slow. - Slim, efficient models (Mistral 7B, LLaMA 3,IBM Granite, RWWK models) = faster, cheaper, easier to fine-tune. Perfect for on-device, edge AI, or latency-sensitive applications. 3๏ธโƒฃ ๐—ข๐—ฝ๐—ฒ๐—ป ๐˜ƒ๐˜€. ๐—–๐—น๐—ผ๐˜€๐—ฒ๐—ฑ - Need full control? Open-source models (LLaMA 3, Mistral, Llama) give you transparency and customization. - Want cutting-edge performance? Closed models (GPT-4, Gemini, Claude) still lead in general intelligence. ๐—ง๐—ต๐—ฒ ๐—ž๐—ฒ๐˜† ๐—ง๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†? There is no "best" model โ€” only the best one for your use case, but it's key to understand the differences to make an informed decision: - Running AI in production? Go slim, go fast. - Need state-of-the-art reasoning? Go big, go deep. - Building industry-specific AI? Go specialized and save some money with SLMs. I love seeing how the AI and LLM stack is evolving, offering multiple directions depending on your specific use case. --- โžก๏ธ ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—ณ๐—ผ๐˜‚๐—ป๐—ฑ ๐˜๐—ต๐—ถ๐˜€ ๐˜‚๐˜€๐—ฒ๐—ณ๐˜‚๐—น, ๐˜†๐—ผ๐˜‚โ€™๐—น๐—น ๐—น๐—ผ๐˜ƒ๐—ฒ ๐—บ๐˜† ๐—ป๐—ฒ๐˜„ ๐—ป๐—ฒ๐˜„๐˜€๐—น๐—ฒ๐˜๐˜๐—ฒ๐—ฟ. ๐—ช๐—ฒ๐—ฒ๐—ธ๐—น๐˜† ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐˜€ ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€, ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€, ๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐—ฎ๐˜โ€™๐˜€ ๐—ป๐—ฒ๐˜…๐˜. ๐—ฌ๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐˜€๐˜‚๐—ฏ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐—ต๐—ฒ๐—ฟ๐—ฒ: https://lnkd.in/dWMsApuD


        2k

        ๐—ง๐—ต๐—ถ๐˜€ Stanford University ๐˜„๐—ฒ๐—ฏ๐—ถ๐—ป๐—ฎ๐—ฟ ๐—ฒ๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป๐˜€ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ฒ๐—ฐ๐˜๐—น๐˜† ๐—ต๐—ผ๐˜„ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€ ๐—ถ๐—ป ๐—ผ๐—ป๐—ฒ ๐—ต๐—ผ๐˜‚๐—ฟ. โฌ‡๏ธ A very short, but on point explanation of the core building blocks of AI Agents. Best of all, it's completely ๐—™๐—ฅ๐—˜๐—˜ to access! ๐—ž๐—ฒ๐˜† ๐˜€๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜๐˜€: โฌ‡๏ธ [00:46] How Language Models actually work [07:00] Prompt engineering tactics that matter [21:07] Why LMs fail โ€” and where they break [23:26] Retrieval-Augmented Generation (RAG) as a fix [26:48] Tool use & function calling [29:22] Agentic behavior: action-taking LMs [39:19] Planning, reflection, multi-agent workflows [38:15] Real-world use cases: software dev, task automation If youโ€™re investing an hour in AI today โ€” make it this one. Watch it. Take notes and get ahead. Webinar: https://lnkd.in/dkdCPBUx


          1k

          ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ ๐—ท๐˜‚๐˜€๐˜ ๐—ฝ๐˜‚๐—ฏ๐—น๐—ถ๐˜€๐—ต๐—ฒ๐—ฑ ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—ผ๐—ณ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—š๐—ฃ๐—ง-4.1 ๐—ฝ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด ๐—ด๐˜‚๐—ถ๐—ฑ๐—ฒ! It provides a detailed guide on how to steer GPT-4.1 with precision, including examples, tips, and advanced techniques. You can access the full version for free below. โฌ‡๏ธ ๐—œ๐—ป ๐˜€๐˜‚๐—บ๐—บ๐—ฎ๐—ฟ๐˜†, ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐—ธ๐—ฒ๐˜† ๐—ฒ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐˜€: โžœ Be Clear with Your Instructions: GPT-4.1 is really good at following directions, but only if you're specific. The more clear and direct your prompt, the better the response. โžœ Break Down Complex Tasks: If you're working on something complicated, ask GPT-4.1 to โ€œthink step by step.โ€ It helps the model give more accurate and thoughtful answers. โžœ Use Structure: If you need to share a lot of info, use clear structureโ€”like markdown or bullet points. This helps GPT-4.1 understand and organize the info better. โžœ Format Your Prompts with Clear Sections: Structure your prompts for easier comprehension: - Role and Objective - Instructions (with subcategories) - Reasoning Steps - Output Format - Examples - Final instructions โžœ Put Important Instructions at the Start and End: For longer prompts, put your key instructions both at the beginning and the end. This helps the model stay on track. โžœ Guide It with Reminders: If you're designing a workflow or solving a problem, include reminders like โ€œkeep going until itโ€™s fully resolvedโ€ or โ€œplan carefully before acting.โ€ This keeps the model focused. โžœ Use the Token Window Wisely: GPT-4.1 can handle a huge amount of text, but too much at once can slow it down. Be strategic about how much context you provide. โžœ Balance Internal and External Knowledge: For factual questions, tell GPT-4.1 to either โ€œonly use the provided contextโ€ or to mix that context with general knowledge. This helps you get the most accurate results. ๐—œ๐—ป ๐˜€๐—ต๐—ผ๐—ฟ๐˜: ๐—ง๐—ต๐—ฒ ๐—ธ๐—ฒ๐˜† ๐˜๐—ผ ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐—š๐—ฃ๐—ง-4.1 ๐—ฒ๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ๐—น๐˜† ๐—ถ๐˜€ ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ, ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐—ฝ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐—ด๐˜‚๐—ถ๐—ฑ๐—ฒ ๐—ถ๐˜ ๐˜๐—ผ๐˜„๐—ฎ๐—ฟ๐—ฑ ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐—ฎ๐—ป๐˜€๐˜„๐—ฒ๐—ฟ. ๐—œ๐˜โ€™๐˜€ ๐—ฎ๐—น๐—น ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—ฎ๐˜€๐—ธ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐˜„๐—ฎ๐˜†! Access it here or download it below: https://lnkd.in/dCm6DeFW


          2k

          ๐—ฅ๐—”๐—š ๐—ถ๐˜€ ๐—ป๐—ผ ๐—น๐—ผ๐—ป๐—ด๐—ฒ๐—ฟ ๐—ท๐˜‚๐˜€๐˜ โ€œ๐—ฟ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ฒ" ๐—ผ๐—ฟ ๐—ฎ ๐˜€๐—ถ๐—ป๐—ด๐—น๐—ฒ ๐—ฝ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ. ๐—œ๐˜โ€™๐˜€ ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ผ๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ณ๐—ผ๐—ฟ ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ ๐—”๐—œ. โฌ‡๏ธ By early 2025, over 51% of enterprise GenAI deployments use RAG architectures โ€” up from 31% just a year earlier. And for good reason: itโ€™s powering everything from customer support and legal automation to search and content generation. BUT real-world complexity demands modular, dynamic, and intelligent system architectures โ€” not simplistic pipelines. What started as a simple retrieval pipeline (Naive RAG) is now evolving into the architectural backbone of large-scale, production-grade reasoning systems. Below is one of the clearest overviews of the evolving RAG design space โ€” from Naive setups to Agentic multi-system architectures. ๐—Ÿ๐—ฒ๐˜'๐˜€ ๐—ฏ๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—ถ๐˜ ๐—ฑ๐—ผ๐˜„๐—ป: โฌ‡๏ธ ๐—ก๐—ฎ๐—ถ๐˜ƒ๐—ฒ ๐—ฅ๐—”๐—š โžœ Retrieve documents, pass them to the LLM, generate an output. - Fast to build - Fragile when faced with ambiguity, long context, or conflicting information ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฒ-๐—ฎ๐—ป๐—ฑ-๐—ฅ๐—ฒ๐—ฟ๐—ฎ๐—ป๐—ธ ๐—ฅ๐—”๐—š โžœ Adds reranking to prioritize the most relevant information before generation. - Improves accuracy and grounding - Reduces risk of hallucinations ๐— ๐˜‚๐—น๐˜๐—ถ๐—บ๐—ผ๐—ฑ๐—ฎ๐—น ๐—ฅ๐—”๐—š โžœ Extends retrieval and reasoning to include text, images, video, and audio. - Critical for industries handling unstructured, diverse data types - Unlocks new applications in healthcare, legal, automotive, and manufacturing ๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต ๐—ฅ๐—”๐—š โžœ Incorporates graph databases for structured reasoning across entities and relationships. - Enables explainable AI - Essential for compliance, auditing, supply chain, and knowledge management ๐—›๐˜†๐—ฏ๐—ฟ๐—ถ๐—ฑ ๐—ฅ๐—”๐—š โžœ Blends vector search, keyword search, and graph retrieval strategies. - Maximizes robustness and adaptability across use cases - Balances precision and recall for production environments ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฅ๐—”๐—š (๐—ฅ๐—ผ๐˜‚๐˜๐—ฒ๐—ฟ) โžœ Uses agent-based orchestration to dynamically route queries to specialized tools, indexes, or retrieval strategies. - Intelligent query handling - Core enabler for autonomous workflows ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฅ๐—”๐—š โžœ Multiple agents collaborate, reason, retrieve, and act across distributed systems. - Supports complex planning, tool use, and decision-making - The foundation for enterprise-grade AI orchestration and multi-modal workflows ๐—ฅ๐—”๐—š ๐—ถ๐˜€๐—ปโ€™๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป โ€” ๐—ถ๐˜โ€™๐˜€ ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ณ๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐˜€๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ, ๐—ฝ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป-๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐—š๐—ฒ๐—ป๐—”๐—œ. ๐—˜๐—ฎ๐—ฐ๐—ต ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜€๐˜๐˜†๐—น๐—ฒ ๐˜€๐—ฒ๐—ฟ๐˜ƒ๐—ฒ๐˜€ ๐—ฎ ๐—ฑ๐—ถ๐˜€๐˜๐—ถ๐—ป๐—ฐ๐˜ ๐—ฝ๐˜‚๐—ฟ๐—ฝ๐—ผ๐˜€๐—ฒ โ€” ๐—ณ๐—ฟ๐—ผ๐—บ ๐˜€๐—ถ๐—บ๐—ฝ๐—น๐—ฒ ๐—ฟ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น ๐—ฝ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜…, ๐—บ๐˜‚๐—น๐˜๐—ถ-๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€. Kudos to Weaviate for this brilliant cheatsheet!


            5k

            ๐—ง๐—ต๐—ฒ ๐— ๐—ข๐—ฆ๐—ง ๐—ฑ๐—ถ๐˜€๐—ฟ๐˜‚๐—ฝ๐˜๐—ถ๐˜ƒ๐—ฒ ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐˜† ๐—ถ๐˜€ ๐—ก๐—ข๐—ง ๐—”๐—œ, ๐—ถ๐˜'๐˜€ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€! โฌ‡๏ธ Because with AI Agents, AI finally gets hands and feet โ€” and can start working on its own. This is the moment AI stops being a tool โ€” and starts acting like a team member. ๐— ๐—”๐—ก๐—ฌ ๐—ผ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—ฎ๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ณ๐—ผ๐—ฟ ๐—ฎ ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ! So here it is โ€” a practical breakdown of what AI Agents are, why they matter, and how to get started. 2025 will be the year AI Agents move from demo to deployment. And those who understand how to build with them โ€” will define the next era. To help you, I`ve attached a detailed roadmap made in collaboration with Rakesh Gohel (a true expert in the AI agent space!): โฌ‡๏ธ ๐Ÿ“Œ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น 1: ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€ ๐—ผ๐—ณ ๐— ๐—Ÿ ๐—ฎ๐—ป๐—ฑ ๐—š๐—ฒ๐—ป๐—”๐—œ - Basics of Python and Typescript Key Concepts to Learn: a. Data types and control structures. b. File I/O operations. c. Introduction to simple networks. - Basics of Machine Learning Key Concepts to Learn: a. Types of Machine Learning (Supervised, Unsupervised, Reinforcement). b. Neural Networks and Deep Learning fundamentals. c. Basics of Reinforcement Learning. - Basics of API Wrappers Key Concepts to Learn: a. Understanding different API types. b. Building GPT-based wrappers. c. Authentication and secure API communication. - Basics of Prompt Engineering Key Concepts to Learn: a. Chain of Thought and Graph of Thought prompting. b. Zero-shot and Few-shot techniques. c. Designing role-based prompts. - Basics of LLMs Key Concepts to Learn: a. Transformer models and MoE (Mixture of Experts). b. Fine-tuning LLMs for custom tasks. c. Understanding context windows. ๐Ÿ“Œ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น 2: ๐——๐—ฒ๐—ฒ๐—ฝ ๐——๐—ถ๐˜ƒ๐—ฒ ๐—ถ๐—ป๐˜๐—ผ ๐—ฅ๐—”๐—š๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ - Basics of RAGs Key Concepts to Learn: a. Embeddings and vector databases. b. Retrieval and generation models. - Basics of AI Agents Key Concepts to Learn: a. Different types of agents and their design patterns. b. Tools and agent memory management. - AI Agent Frameworks Key Concepts to Learn: a. Orchestration, planning, and feedback loops. b. Streaming agent workflows. - Multi-Agent Systems Key Concepts to Learn: a. Communication patterns and hand-offs. b. A2A (Agent-to-Agent) Protocols. - Evaluation and Observability Key Concepts to Learn: a. Metrics for evaluation (latency, stress tests, logging). b. Building observability for scalable AI agents. ๐—ง๐—ต๐—ถ๐˜€ ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐˜„๐—ถ๐—น๐—น ๐—ต๐—ฒ๐—น๐—ฝ ๐˜†๐—ผ๐˜‚ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—บ๐˜‚๐—ฐ๐—ต ๐—ณ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ถ๐—ป ๐—บ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€๐—… ๐—ฃ๐—Ÿ๐—จ๐—ฆ: ๐—œโ€™๐˜ƒ๐—ฒ ๐—ฒ๐˜ƒ๐—ฒ๐—ป ๐—ฎ๐˜๐˜๐—ฎ๐—ฐ๐—ต๐—ฒ๐—ฑ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฐ๐—ผ๐—บ๐—บ๐—ฒ๐—ป๐˜๐˜€ ๐˜๐—ผ ๐—ด๐—ฒ๐˜ ๐˜†๐—ผ๐˜‚ ๐˜€๐˜๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฑ. --- Save ๐Ÿ’พ โžž React ๐Ÿ‘ โžž Share โ™ป๏ธ & follow for everything related to AI Agent


              5k

              ๐—ฅ๐—ฒ๐—ฎ๐—น๐—ถ๐˜๐˜† ๐—ฐ๐—ต๐—ฒ๐—ฐ๐—ธ: ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐—ก๐—ข๐—ง ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ ๐—ณ๐—ฎ๐—ป๐—ฐ๐˜† ๐—จ๐—œ ๐—ผ๐˜ƒ๐—ฒ๐—ฟ ๐—–๐—ต๐—ฎ๐˜๐—š๐—ฃ๐—ง. ๐—ง๐—ต๐—ฒ๐˜† ๐—ฎ๐—ฟ๐—ฒ ๐—ฑ๐—ฒ๐—ฒ๐—ฝ๐—น๐˜† ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜… ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€! โฌ‡๏ธ ๐˜Œ๐˜ท๐˜ฆ๐˜ณ๐˜บ๐˜ฐ๐˜ฏ๐˜ฆโ€™๐˜ด ๐˜ต๐˜ข๐˜ญ๐˜ฌ๐˜ช๐˜ฏ๐˜จ ๐˜ข๐˜ฃ๐˜ฐ๐˜ถ๐˜ต ๐˜ˆ๐˜ ๐˜ข๐˜จ๐˜ฆ๐˜ฏ๐˜ต๐˜ด. - "๐˜ˆ๐˜จ๐˜ฆ๐˜ฏ๐˜ต๐˜ด ๐˜ธ๐˜ช๐˜ญ๐˜ญ ๐˜ณ๐˜ฆ๐˜ฑ๐˜ญ๐˜ข๐˜ค๐˜ฆ ๐˜ซ๐˜ฐ๐˜ฃ๐˜ด." - "๐˜ˆ๐˜จ๐˜ฆ๐˜ฏ๐˜ต๐˜ด ๐˜ธ๐˜ช๐˜ญ๐˜ญ ๐˜ข๐˜ถ๐˜ต๐˜ฐ๐˜ฎ๐˜ข๐˜ต๐˜ฆ ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ๐˜บ๐˜ต๐˜ฉ๐˜ช๐˜ฏ๐˜จ." - "๐˜ˆ๐˜จ๐˜ฆ๐˜ฏ๐˜ต๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ง๐˜ถ๐˜ต๐˜ถ๐˜ณ๐˜ฆ." However, the reality is far more complex. AI agents are not just chat interfaces or simple API calls. These are full-stack engineering beasts that require integration and coordination across multiple layers of technology. The user may see it as simple, but under the hood ("iceberg") it's anything but simple and complex infrastructure. ๐—Ÿ๐—ฒ๐˜'๐˜€ ๐—ฏ๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—ถ๐˜ ๐—ฑ๐—ผ๐˜„๐—ป: โฌ‡๏ธ 1๏ธโƒฃ ๐—™๐—ฟ๐—ผ๐—ป๐˜-๐—ฒ๐—ป๐—ฑ โ€“ The user interface, but thatโ€™s just the surface. 2๏ธโƒฃ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† โ€“ Managing short-term and long-term context. 3๏ธโƒฃ ๐—”๐˜‚๐˜๐—ต๐—ฒ๐—ป๐˜๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€“ Identity verification, security, and access control. 4๏ธโƒฃ ๐—ง๐—ผ๐—ผ๐—น๐˜€ โ€“ External plugins, search capabilities, integrations. 5๏ธโƒฃ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ข๐—ฏ๐˜€๐—ฒ๐—ฟ๐˜ƒ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† โ€“ Monitoring, logging, and performance tracking. 6๏ธโƒฃ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ข๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€“ Multi-agent coordination, execution, automation. 7๏ธโƒฃ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ฅ๐—ผ๐˜‚๐˜๐—ถ๐—ป๐—ด โ€“ Directing queries to the right AI models. 8๏ธโƒฃ ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ โ€“ The LLMs that power the agentโ€™s reasoning. 9๏ธโƒฃ ๐—˜๐—ง๐—Ÿ (๐—˜๐˜…๐˜๐—ฟ๐—ฎ๐—ฐ๐˜, ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ, ๐—Ÿ๐—ผ๐—ฎ๐—ฑ) โ€“ Data ingestion and processing pipelines. ๐Ÿ”Ÿ ๐——๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ โ€“ Vector stores and structured storage for knowledge retention. 1๏ธโƒฃ1๏ธโƒฃ ๐—œ๐—ป๐—ณ๐—ฟ๐—ฎ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ/๐—•๐—ฎ๐˜€๐—ฒ โ€“ Compute environments and cloud execution. 1๏ธโƒฃ2๏ธโƒฃ ๐—–๐—ฃ๐—จ/๐—š๐—ฃ๐—จ ๐—ฃ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ๐˜€ โ€“ The backbone of AI model execution. In summary, AI agents arenโ€™t just "smart chatbots" โ€” theyโ€™re full-stack AI systems requiring seamless orchestration across multiple layers. In addition, there are many companies developing similar technologies right now, fueled by hype and funding. I believe that the market wonโ€™t stay this fragmented โ€” consolidation is inevitable (I believe if you come back to this post in 3 years 70% of the companies below will basically not exist anymore). ๐—ง๐—ต๐—ฒ ๐˜„๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€? ๐—ง๐—ต๐—ผ๐˜€๐—ฒ ๐˜„๐—ต๐—ผ ๐—ฏ๐—ฟ๐—ถ๐—ฑ๐—ด๐—ฒ ๐—”๐—œ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜…๐—ถ๐˜๐˜† ๐˜„๐—ถ๐˜๐—ต ๐—ฟ๐—ฒ๐—ฎ๐—น ๐—ฏ๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ฏ๐˜† ๐—บ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ฒ๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜…๐—ถ๐˜๐˜† ๐—ฎ๐—ป๐—ฑ ๐—ฑ๐—ฒ๐—น๐—ถ๐˜ƒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐˜€๐—ฒ๐—ฎ๐—บ๐—น๐—ฒ๐˜€๐˜€ ๐—จ๐—ซ ๐˜€๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ฐ๐—ถ๐˜๐˜† ๐—ณ๐—ผ๐—ฟ ๐˜‚๐˜€๐—ฒ๐—ฟ๐˜€. Kudos to Rakesh Gohel for this excellent visualization!


                4k

                ๐—”๐˜ ๐—œ/๐—ข 2025, Google ๐˜€๐—ต๐—ผ๐˜„๐—ฒ๐—ฑ ๐˜‚๐˜€ ๐˜„๐—ต๐—ฎ๐˜ ๐—”๐—œ-๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฅ๐—˜๐—”๐—Ÿ๐—Ÿ๐—ฌ ๐—บ๐—ฒ๐—ฎ๐—ป๐˜€. ๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐˜„๐—ต๐—ฎ๐˜ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—ฎ๐—ป๐—ป๐—ผ๐˜‚๐—ป๐—ฐ๐—ฒ๐—ฑ: โฌ‡๏ธ The company's flagship developer event Google I/O 2025 was held last night in Mountain View, California. ๐—ง๐—Ÿ๐——๐—ฅ: Google is turning Gemini into the AI operating system for everything โ€” with agents now embedded across Search, Chrome, Workspace, Android, and more. If you donโ€™t have time for the full event, hereโ€™s a curated ๐˜€๐˜‚๐—ฝ๐—ฒ๐—ฟ๐—ฐ๐˜‚๐˜ of the highlights that really matter. ๐—ž๐—ฒ๐˜† ๐—บ๐—ผ๐—บ๐—ฒ๐—ป๐˜๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—œ/๐—ข ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ: 0:00 ๐—œ๐—ป๐˜๐—ฟ๐—ผ โ€“ AI-native from the ground up 0:11 ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐—ฝ๐—น๐—ฎ๐˜†๐˜€ ๐—ฎ ๐—ฃ๐—ผ๐—ธ๐—ฒ๐—บ๐—ผ๐—ป ๐—ด๐—ฎ๐—บ๐—ฒ โ€” memory, reasoning, and code 0:30 ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—•๐—ฒ๐—ฎ๐—บ โ€“ Real-time 3D video chat with AI 1:08 ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐— ๐—ฒ๐—ฒ๐˜ โ€“ Speech-to-speech translation, live 1:27 ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐— ๐—ฎ๐—ฟ๐—ถ๐—ป๐—ฒ๐—ฟ โ€“ AI agents that book, plan, filter, decide 2:07 ๐—ฃ๐—ฒ๐—ฟ๐˜€๐—ผ๐—ป๐—ฎ๐—น ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ โ€“ Gemini gets memory and task awareness 2:40 ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐Ÿฎ.๐Ÿฑ ๐—ฃ๐—ฟ๐—ผ + ๐—™๐—น๐—ฎ๐˜€๐—ต โ€“ New SOTA models, LMArena leader 4:57 ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—”๐˜€๐˜๐—ฟ๐—ฎ โ€“ Multimodal, fast-response agent that sees and hears 5:32 ๐—”๐—œ ๐— ๐—ผ๐—ฑ๐—ฒ โ€“ Overlay for restaurants, bookings, prices, events 7:10 ๐—ฆ๐—ต๐—ผ๐—ฝ๐—ฝ๐—ถ๐—ป๐—ด โ€“ Track, compare, and auto-buy with Google Pay 8:34 ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐—Ÿ๐—ถ๐˜ƒ๐—ฒ โ€“ Screen sharing + live AI guidance 8:59 ๐——๐—ฒ๐—ฒ๐—ฝ ๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—”๐—ด๐—ฒ๐—ป๐˜ โ€“ Upload files, get insights 9:12 ๐—–๐—ฎ๐—ป๐˜ƒ๐—ฎ๐˜€ โ€“ Live, collaborative AI whiteboard 9:31 ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐—ถ๐—ป ๐—–๐—ต๐—ฟ๐—ผ๐—บ๐—ฒ โ€“ AI understands and acts on any webpage 9:51 ๐—œ๐—บ๐—ฎ๐—ด๐—ฒ๐—ป ๐Ÿฐ โ€“ Next-gen image generation 10:23 ๐—ฉ๐—ฒ๐—ผ ๐Ÿฏ โ€“ Ultra-realistic video model 11:01 ๐—Ÿ๐˜†๐—ฟ๐—ถ๐—ฎ ๐Ÿฎ โ€“ AI-powered music composition 11:56 ๐—™๐—น๐—ผ๐˜„๐˜€ โ€“ Multimodal, promptable AI video creation 12:39 ๐—”๐—ป๐—ฑ๐—ฟ๐—ผ๐—ถ๐—ฑ ๐—ซ๐—ฅ โ€“ AI-first spatial computing 12:57 ๐—ฆ๐—ฎ๐—บ๐˜€๐˜‚๐—ป๐—ด ๐— ๐—ผ๐—ผ๐—ต๐—ฎ๐—ป โ€“ Googleโ€™s XR headset revealed 13:16 ๐—Ÿ๐—ถ๐˜ƒ๐—ฒ ๐—ด๐—น๐—ฎ๐˜€๐˜€๐—ฒ๐˜€ ๐—ฑ๐—ฒ๐—บ๐—ผ โ€“ Gemini + XR = real-time AI overlay Super insightful and forward-looking: Googleโ€™s AI strategy just went full stack. Even if some of these projects donโ€™t make it past the prototype stage, the direction is obvious: AI is being integrated into everything. LLMs โ€” Gemini, in this case โ€” are rapidly becoming the new operating system and everything will be powered by AI Agents across all products. Full keynote: https://lnkd.in/dPFFtyZ9 Supercut: https://lnkd.in/d-eBNGjw Enjoy watching!


                2k

                ๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐—ต๐—ผ๐˜„ ๐—š๐—ฒ๐—ป๐—”๐—œ ๐—ณ๐—ถ๐—ป๐—ฑ๐˜€ ๐—บ๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐˜‚๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐˜๐—ฒ๐˜…๐˜. โฌ‡๏ธ And yes it all starts with vector databases โ€” not magic. This is the mechanism that powers AI Agent memory, RAG and semantic search. And this diagram below? Nails the entire flow โ€” from raw data to relevant answers. Let's break it down (the explanation shows of how a vector database works โ€” using the simple example prompt: โ€œWho am I): โฌ‡๏ธ 1. ๐—œ๐—ป๐—ฝ๐˜‚๐˜: โžœ There are two inputs: Data = the source text (docs, chat history, product descriptions...) and the query = the question or prompt youโ€™re asking. These are processed in exactly the same way โ€” so they can be compared mathematically later. 2. ๐—ช๐—ผ๐—ฟ๐—ฑ ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด โžœ Each word (like โ€œhowโ€, โ€œareโ€, โ€œyouโ€) is transformed into a list of numbers โ€” a word embedding. These word embeddings capture semantic meaning, so that for example "bank" (money) and "finance" land closer than "bank" (river). This turns raw text into numerical signals. 3. ๐—ง๐—ฒ๐˜…๐˜ ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด ๐—ฃ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ โžœ Both data and query go through this stack: - Encoder: Transforms word embeddings based on their context (e.g. transformers like BERT). - Linear Layer: Projects these high-dimensional embeddings into a more compact space. -ReLU Activation: Introduces non-linearity โ€” helping the model focus on important features. The output? A single text embedding that represents the entire sentence or chunk. 4. ๐— ๐—ฒ๐—ฎ๐—ป ๐—ฃ๐—ผ๐—ผ๐—น๐—ถ๐—ป๐—ด โžœ Now we take the average of all token embeddings โ€” one clean vector per chunk. This is the "semantic fingerprint" of your text. 5. ๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—ถ๐—ป๐—ด โžœ All document vectors are indexed โ€” meaning theyโ€™re structured for fast similarity search. This is where vector databases like FAISS or Pinecone come in. 6. ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น (๐——๐—ผ๐˜ ๐—ฃ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜ & ๐—”๐—ฟ๐—ด๐—บ๐—ฎ๐˜…) โžœ When you submit a query.: The query is also embedded and pooled into a vector. The system compares your query to all indexed vectors using dot product โ€” a measure of similarity. Argmax finds the closest match โ€” i.e. the most relevant chunk. This is semantic search at work. - Keyword search finds strings. - Vector search finds meaning. 7. ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐—ฆ๐˜๐—ผ๐—ฟ๐—ฎ๐—ด๐—ฒ โžœ All document vectors live in persistent vector storage โ€” always ready for future retrieval and use by the LLM. This is basically the database layer behind: - RAG - Semantic search - Agent memory - Enterprise GenAI apps - etc. ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐—Ÿ๐—Ÿ๐— ๐˜€ โ€” ๐˜๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐˜๐—ต๐—ฒ ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ผ๐—ป. Kudos to Tom Yeh for this brilliant visualization!


                  3k

                  99% ๐—ผ๐—ณ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐—ด๐—ฒ๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐˜„๐—ฟ๐—ผ๐—ป๐—ด: ๐—ง๐—ต๐—ฒ๐˜† ๐˜‚๐˜€๐—ฒ ๐˜๐—ต๐—ฒ ๐˜๐—ฒ๐—ฟ๐—บ๐˜€ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐—ฎ๐—ฏ๐—น๐˜† โ€” ๐—ฏ๐˜‚๐˜ ๐˜๐—ต๐—ฒ๐˜† ๐—ฑ๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฏ๐—ฒ ๐˜๐˜„๐—ผ ๐—ณ๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐—น๐˜† ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€! โฌ‡๏ธ Letโ€™s clarify it once and for all: โฌ‡๏ธ 1. ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: ๐—ง๐—ผ๐—ผ๐—น๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐˜†, ๐—ช๐—ถ๐˜๐—ต๐—ถ๐—ป ๐—Ÿ๐—ถ๐—บ๐—ถ๐˜๐˜€ โžœ AI agents are modular, goal-directed systems that operate within clearly defined boundaries. Theyโ€™re built to: * Use tools (APIs, browsers, databases) * Execute specific, task-oriented workflows * React to prompts or real-time inputs * Plan short sequences and return actionable outputs ๐˜›๐˜ฉ๐˜ฆ๐˜บโ€™๐˜ณ๐˜ฆ ๐˜ฆ๐˜น๐˜ค๐˜ฆ๐˜ญ๐˜ญ๐˜ฆ๐˜ฏ๐˜ต ๐˜ง๐˜ฐ๐˜ณ ๐˜ต๐˜ข๐˜ณ๐˜จ๐˜ฆ๐˜ต๐˜ฆ๐˜ฅ ๐˜ข๐˜ถ๐˜ต๐˜ฐ๐˜ฎ๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ, ๐˜ญ๐˜ช๐˜ฌ๐˜ฆ: ๐˜Š๐˜ถ๐˜ด๐˜ต๐˜ฐ๐˜ฎ๐˜ฆ๐˜ณ ๐˜ด๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ณ๐˜ต ๐˜ฃ๐˜ฐ๐˜ต๐˜ด, ๐˜๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ฏ๐˜ข๐˜ญ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ ๐˜ด๐˜ฆ๐˜ข๐˜ณ๐˜ค๐˜ฉ, ๐˜Œ๐˜ฎ๐˜ข๐˜ช๐˜ญ ๐˜ต๐˜ณ๐˜ช๐˜ข๐˜จ๐˜ฆ, ๐˜”๐˜ฆ๐˜ฆ๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ด๐˜ค๐˜ฉ๐˜ฆ๐˜ฅ๐˜ถ๐˜ญ๐˜ช๐˜ฏ๐˜จ, ๐˜Š๐˜ฐ๐˜ฅ๐˜ฆ ๐˜ด๐˜ถ๐˜จ๐˜จ๐˜ฆ๐˜ด๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด But even the most advanced are limited by scope. They donโ€™t initiate. They donโ€™t collaborate. They execute what we ask! 2. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ: ๐—” ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ผ๐—ณ ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ โžœ Agentic AI is an architectural leap. Itโ€™s not just one smarter agent โ€” itโ€™s multiple specialized agents working together toward shared goals. These systems exhibit: * Multi-agent collaboration * Goal decomposition and role assignment * Inter-agent communication via memory or messaging * Persistent context across time and tasks * Recursive planning and error recovery * Distributed orchestration and adaptive feedback Agentic AI systems donโ€™t just follow instructions. They coordinate. They adapt. They manage complexity. ๐˜Œ๐˜น๐˜ข๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜ด ๐˜ช๐˜ฏ๐˜ค๐˜ญ๐˜ถ๐˜ฅ๐˜ฆ: ๐˜ณ๐˜ฆ๐˜ด๐˜ฆ๐˜ข๐˜ณ๐˜ค๐˜ฉ ๐˜ต๐˜ฆ๐˜ข๐˜ฎ๐˜ด ๐˜ฑ๐˜ฐ๐˜ธ๐˜ฆ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ฃ๐˜บ ๐˜ข๐˜จ๐˜ฆ๐˜ฏ๐˜ต๐˜ด, ๐˜ด๐˜ฎ๐˜ข๐˜ณ๐˜ต ๐˜ฉ๐˜ฐ๐˜ฎ๐˜ฆ ๐˜ฆ๐˜ค๐˜ฐ๐˜ด๐˜บ๐˜ด๐˜ต๐˜ฆ๐˜ฎ๐˜ด ๐˜ฐ๐˜ฑ๐˜ต๐˜ช๐˜ฎ๐˜ช๐˜ป๐˜ช๐˜ฏ๐˜จ ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜จ๐˜บ/๐˜ด๐˜ฆ๐˜ค๐˜ถ๐˜ณ๐˜ช๐˜ต๐˜บ, ๐˜ด๐˜ธ๐˜ข๐˜ณ๐˜ฎ๐˜ด ๐˜ฐ๐˜ง ๐˜ณ๐˜ฐ๐˜ฃ๐˜ฐ๐˜ต๐˜ด ๐˜ช๐˜ฏ ๐˜ญ๐˜ฐ๐˜จ๐˜ช๐˜ด๐˜ต๐˜ช๐˜ค๐˜ด ๐˜ฐ๐˜ณ ๐˜ข๐˜จ๐˜ณ๐˜ช๐˜ค๐˜ถ๐˜ญ๐˜ต๐˜ถ๐˜ณ๐˜ฆ ๐˜ฎ๐˜ข๐˜ฏ๐˜ข๐˜จ๐˜ช๐˜ฏ๐˜จ ๐˜ณ๐˜ฆ๐˜ข๐˜ญ-๐˜ต๐˜ช๐˜ฎ๐˜ฆ ๐˜ถ๐˜ฏ๐˜ค๐˜ฆ๐˜ณ๐˜ต๐˜ข๐˜ช๐˜ฏ๐˜ต๐˜บ ๐—ง๐—ต๐—ฒ ๐—–๐—ผ๐—ฟ๐—ฒ ๐——๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ? AI Agents = autonomous tools for single-task execution Agentic AI = orchestrated ecosystems for workflow-level intelligence ๐—ก๐—ผ๐˜„ ๐—น๐—ผ๐—ผ๐—ธ ๐—ฎ๐˜ ๐˜๐—ต๐—ฒ ๐—ฝ๐—ถ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ: โฌ‡๏ธ ๐—ข๐—ป ๐˜๐—ต๐—ฒ ๐—น๐—ฒ๐—ณ๐˜: a smart thermostat, which can be an AI Agent. It keeps your room at 21ยฐC. Maybe it learns your schedule. But itโ€™s working alone. ๐—ข๐—ป ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜: Agentic AI. A full smart home ecosystem โ€” weather-aware, energy-optimized, schedule-sensitive. Agents talk to each other. They share data. They make coordinated decisions to optimize your comfort, cost, and security in real time. Thatโ€™s the shift = From pure task automation to goal-driven orchestration. From single-agent logic to collaborative intelligence. This is whatโ€™s coming = This is Agentic AI. And if we confuse โ€œagentโ€ with โ€œagentic,โ€ we risk underbuilding for what AI is truly capable of. The Cornell University paper in the comments on this topic is excellent! โฌ‡๏ธ


                    3k

                    ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฎ๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€, ๐˜†๐—ผ๐˜‚ ๐—ก๐—˜๐—˜๐—— ๐—ง๐—ข ๐—ž๐—ก๐—ข๐—ช ๐˜๐—ต๐—ถ๐˜€ ๐˜€๐—ถ๐˜… ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€! ๐Ÿ› ๏ธ AI Agents are evolving fast, opening up many possibilities for a new paradigm of applications. In today's world, we use LLMs mostly in zero-shot mode, in which a model generates final output token by token without revising its work. With an agent workflow, we can ask the LLM to iterate over certain output many times. There are many tools and possibilities for AI agents today, creating both exciting opportunities and a lot of noise. To cut through the confusion, hereโ€™s a framework of six key design patterns you can leverage to build powerful, scalable agentic applications: Letโ€™s break it down: โฌ‡๏ธ 1. ๐—ฅ๐—ฒ๐—”๐—ฐ๐˜ ๐—”๐—ด๐—ฒ๐—ป๐˜   Thinks, takes action, looks at the result, repeats.   Classic loop: โ€œShould I Google this?โ€ โ†’ Does it โ†’ Adjusts.   โ†’ Used in most AI products today (like basic chat assistants). 2. ๐—–๐—ผ๐—ฑ๐—ฒ๐—”๐—ฐ๐˜ ๐—”๐—ด๐—ฒ๐—ป๐˜: Runs real code, not just JSON.   So instead of saying โ€œcall API X,โ€ it writes and runs a Python script.   โ†’ More powerful. Used in research agents and dev assistants. 3. ๐— ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐—ป ๐—ง๐—ผ๐—ผ๐—น ๐—จ๐˜€๐—ฒ: Sends tasks to smart APIs (search, cloud, data), and lets them do the heavy lifting.   The agent mostly routes and formats info.   โ†’ Think: a smart middleman between you and powerful services. 4. ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ฅ๐—ฒ๐—ณ๐—น๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป: Agent checks its own work.   Did it make a mistake? It catches it, critiques it, and tries again.   โ†’ Most AI errors happen **because this step is missing.** 5. ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„:  One agent isnโ€™t doing everything.   You have a planner, a researcher, and a writer โ€” all working together.   โ†’ Like a mini team of AIs. More accurate. Less chaos. 6. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฅ๐—”๐—š:  This is what powers apps like Perplexity.   The agent looks stuff up (retrieval), thinks about it, uses tools, and gives you a smarter answer.   โ†’ Works with real-time data, not just model memory. ๐—จ๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€ ๐—ฐ๐—ฎ๐—ป ๐—ถ๐—บ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ-๐˜€๐—ผ๐—น๐˜ƒ๐—ถ๐—ป๐—ด, ๐—ฐ๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป, ๐—ฎ๐—ป๐—ฑ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ, ๐—น๐—ฒ๐—ฎ๐—ฑ๐—ถ๐—ป๐—ด ๐˜๐—ผ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐˜€๐—ผ๐—ฝ๐—ต๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฎ๐—ป๐—ฑ ๐—ฟ๐—ฒ๐—น๐—ถ๐—ฎ๐—ฏ๐—น๐—ฒ ๐—”๐—œ ๐—ฎ๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€. ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐˜€ ๐—ฎ๐—น๐—ผ๐—ป๐—ฒ ๐˜„๐—ผ๐—ปโ€™๐˜ ๐—ด๐—ฒ๐˜ ๐˜†๐—ผ๐˜‚ ๐˜๐—ผ ๐—ฝ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป   โ†’ ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐˜€๐—บ๐—ฎ๐—ฟ๐˜ โ€” ๐—ฏ๐˜‚๐˜ ๐˜€๐˜๐—ฎ๐˜๐—ถ๐—ฐ   โ†’ ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ ๐˜„๐—ถ๐—ป. ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—บ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€. [๐—ก๐—ผ๐˜๐—ฒ ๐˜๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€ ๐—ฐ๐—ฎ๐—ป ๐—ฏ๐—ฒ ๐˜‚๐˜€๐—ฒ๐—ฑ ๐˜๐—ผ๐—ด๐—ฒ๐˜๐—ต๐—ฒ๐—ฟ, ๐—ป๐—ผ๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—ฒ๐˜…๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ๐—น๐˜†.] ๐Ÿ› ๏ธ These patterns are adapted from the Agentic Design Patterns blog series from Andrew Ng (find more in the comments). Save ๐Ÿ’พ โžž React ๐Ÿ‘ โžž Share โ™ป๏ธ & follow for everything related to AI Agents. Kudos to Rakesh Gohel for this excellent visualization!


                      7k

                      ๐—ช๐—ต๐—ฎ๐˜ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐—บ๐—ผ๐˜€๐˜ ๐—ฐ๐—ผ๐—บ๐—บ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ ๐—ถ๐—ป 2025? Given the pace of adoption, one thing is clear: In 12 months, every enterprise workflow will involve AI agents. Not might. Not could. Will. So itโ€™s worth taking a closer look at how this is already playing out. Here are some of the most common and impactful AI agent use cases weโ€™re seeing across industries in 2025. Let's break it down: โฌ‡๏ธ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฅ๐—”๐—š: Retrieval-Augmented Generation reimagined. These agents donโ€™t just retrieve knowledge โ€” they evaluate sources, reason over them, and produce contextually grounded answers. Used for internal knowledge assistants, intelligent documentation, and enterprise Q&A. Examples: IBM watsonx, Perplexity AI, Glean etc. ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„ ๐—”๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: These agents orchestrate tasks across systems. Triggered by APIs, UI actions, or internal events, they can perform multi-step processes without human involvement. Think automated onboarding flows, approvals, or back-office operations. Very easy to build for everybody. Examples: Make.com, Flowise, n8n, Relevance AI etc. ๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: AI-powered development assistants that go beyond code suggestions. These agents can plan, refactor, debug, and even reason across repositories. Ideal for accelerating software engineering teams or bootstrapping prototypes. Examples: Cursor, Roo Code, Windsurf etc. ๐—ง๐—ผ๐—ผ๐—น-๐—•๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: Niche, high-utility agents designed to perform well-defined tasks with specific tools โ€” from sending emails to querying internal search engines. These agents are easy to deploy and integrate into targeted workflows. Examples: Breeze, Clay etc. ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ ๐—จ๐˜€๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: The most ambitious โ€” and most misunderstood. These agents donโ€™t just call APIs. They use the UI. Navigating browsers. Typing into forms. Clicking buttons. Agents that act like humans, powered by models like Claude and GPT-4. ๐—ฉ๐—ผ๐—ถ๐—ฐ๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: Where GenAI meets the phone line. These agents handle support calls, internal queries, and sales outreach... all with voice. Examples: ElevenLabs, Vapi, and others etc. This isnโ€™t theoretical โ€” itโ€™s already happening. AI agent use cases are rapidly maturing, moving from prototypes to production across industries. And if your strategy still revolves around chatbots, youโ€™re already behind. ๐—ง๐—ต๐—ฒ ๐—ป๐—ฒ๐˜…๐˜ 12 ๐—บ๐—ผ๐—ป๐˜๐—ต๐˜€ ๐˜„๐—ถ๐—น๐—น ๐—ฏ๐—ฒ ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐˜๐—ต๐—ผ๐˜€๐—ฒ ๐˜„๐—ต๐—ผ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป, ๐—ฐ๐—ผ๐—บ๐—ฏ๐—ถ๐—ป๐—ฒ, ๐—ฎ๐—ป๐—ฑ ๐—ผ๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐˜๐˜†๐—ฝ๐—ฒ๐˜€ ๐—ผ๐—ณ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ถ๐—ป๐˜๐—ผ ๐—ฟ๐—ฒ๐—ฎ๐—น, ๐˜€๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€. ๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐˜„๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฒ๐˜๐—ถ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฎ๐—ฑ๐˜ƒ๐—ฎ๐—ป๐˜๐—ฎ๐—ด๐—ฒ ๐˜„๐—ถ๐—น๐—น ๐—ฏ๐—ฒ ๐—ฏ๐˜‚๐—ถ๐—น๐˜. Kudos to Rakesh Gohel for this excellent visualization!


                        5k

                        ๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐—ต๐—ฎ๐—ป๐—ฑ๐˜€-๐—ฑ๐—ผ๐˜„๐—ป ๐˜๐—ต๐—ฒ ๐—•๐—˜๐—ฆ๐—ง ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—œ๐— ๐—ฃ๐—Ÿ๐—˜๐—ฆ๐—ง ๐—ถ๐—น๐—น๐˜‚๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—”๐—œ ๐˜†๐—ผ๐˜‚'๐—น๐—น ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐˜€๐—ฒ๐—ฒ! โฌ‡๏ธ A lot of companies picture AI as a straightforward process: Feed in data, sprinkle some AI, and BOOM โ†’ value appears! If only reality were that simple... ๐Ÿ˜… ๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐˜๐—ต๐—ฒ ๐—ฅ๐—ฒ๐—ฎ๐—น ๐—ฆ๐˜๐—ผ๐—ฟ๐˜† ๐—ผ๐—ณ ๐—”๐—œ: What actually happens behind the scenes is a complex journey that involves: 1๏ธโƒฃ Data Sourcing, Cleaning, and Feature Engineering 2๏ธโƒฃ Data Engineering and Modeling 3๏ธโƒฃ Training, Evaluating, and Tuning Models 4๏ธโƒฃ Operationalizing AI to ensure it delivers real-world value And letโ€™s not forget the challenges: ๐—Ÿ๐—ฒ๐—ด๐—ฎ๐—น, ๐—˜๐˜๐—ต๐—ถ๐—ฐ๐—ฎ๐—น, ๐—•๐—ถ๐—ฎ๐˜€, ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜† ๐—ฐ๐—ผ๐—ป๐˜€๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐˜๐˜€ that need to be managed every step of the way! AI isn't a magic wand; it's a marathon of meticulous steps! Yes, there's tremendous value in AI. No, it's not as simple as using ChatGPT. #ai #magic #datascience


                          5k

                          Want to drive more opportunities from LinkedIn?

                          Content Inspiration, AI, scheduling, automation, analytics, CRM.

                          Get all of that and more in Taplio.

                          Try Taplio for free

                          Famous LinkedIn Creators to Check Out

                          Sahil Bloom

                          @sahilbloom

                          Sahil Bloom is the New York Times Bestselling author of The 5 Types of Wealth: A Transformative Guid...

                          1m

                          Followers

                          Izzy Prior

                          @izzyprior

                          No matter how outrageously amazing your mission is, it's likely you're not seeing the results you ne...

                          82k

                          Followers

                          Matt Gray

                          @mattgray1

                          Over the last decade, Iโ€™ve built 4 successful companies and a community of over 14 million people. ...

                          1m

                          Followers

                          Hi! Iโ€™m Daniel. Iโ€™m the creator of The Marketing Millennials and the founder of Authority, a B2B Lin...

                          150k

                          Followers

                          Sam G. Winsbury

                          @sam-g-winsbury

                          We turn entrepreneurs into credible thought leaders through personal branding so they can scale thei...

                          49k

                          Followers

                          Shlomo Genchin

                          @shlomogenchin

                          Hey! Here are 3 ways I can help you: 1๏ธโƒฃ Talks and Workshops: I'll show your team, or students, how...

                          49k

                          Followers

                          Richard Moore

                          @richardjamesmoore

                          โฉYou know how all the clients you'll ever work with are on LinkedIn, right? But you struggle to gene...

                          105k

                          Followers

                          Sabeeka Ashraf

                          @sabeekaashraf

                          On January 8th my "one day" became DAY ONE ... 7 days earlier I downgraded my life into a suitcase....

                          20k

                          Followers

                          Ash Rathod

                          @ashrathod

                          You already know storytelling is essential for your business and brand. But storytelling is much m...

                          73k

                          Followers

                          Justin Welsh

                          @justinwelsh

                          Over the last decade, I helped build two companies past a $1B valuation and raise over $300M in vent...

                          1m

                          Followers

                          Vaibhav Sisinty โ†—๏ธ

                          @vaibhavsisinty

                          I'm an engineer turned marketer, now a founder. I've worked at Uber and Klook, focusing on marketi...

                          451k

                          Followers

                          Austin Belcak

                          @abelcak

                          CultivatedCulture.com/Coaching // I teach people how to land jobs they love in today's market withou...

                          1m

                          Followers

                          Amelia Sordell ๐Ÿ”ฅ

                          @ameliasordell

                          Klowt builds personal brands. I founded the business after realising that the best leads came throu...

                          228k

                          Followers

                          Wes Kao

                          @weskao

                          Wes Kao is an entrepreneur, coach, and advisor who writes at newsletter.weskao.com. She is co-founde...

                          107k

                          Followers

                          Luke Matthews

                          @lukematthws

                          LinkedIn has changed. You need to change too. Hey I'm Luke, I've been marketing for 5+ years on ...

                          188k

                          Followers

                          Tibo Louis-Lucas

                          @thibaultll

                          Founder Prev Taplio & Tweet Hunter (sold) Building Typeframes & revid.ai Invested in animstats.com ...

                          6k

                          Followers

                          Andy Mewborn

                          @amewborn

                          I use to be young & cool. Now I do b2b SaaS. Husband. Dad. Ironman. Founder of Distribute // Co-fo...

                          215k

                          Followers

                          Guillaume Moubeche

                          @-g-

                          If youโ€™re here, that's because you know that your personal growth will drive your business growth ๐Ÿš€...

                          80k

                          Followers