Logo Taplio

Taplio

Andreas Horn's Linkedin Analytics

Get the Linkedin stats of Andreas Horn and many LinkedIn Influencers by Taplio.

Want detailed analytics of your Linkedin Account? Try Taplio for free.

Andreas Horn

open on linkedin

Innovation is not just about creating the future, but about shaping it with purpose and imagination. [All opinions are my own and don't represent my employer.]

Check out Andreas Horn's verified LinkedIn stats (last 30 days)

Followers
126,309
Posts
20
Engagements
67,933
Likes
56,659

Andreas Horn's Best Posts (last 30 days)

Use Taplio to search all-time best posts


McKinsey & Company ๐—ท๐˜‚๐˜€๐˜ ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—น๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ฃ๐—ข๐—ฉ ๐—ผ๐—ป ๐—”๐—œ ๐—”๐—š๐—˜๐—ก๐—ง๐—ฆ! โฌ‡๏ธ It's a very insightful read that doesn't just skim the surface and looks at the topic more from a strategic and business perspective than from a technical perspective. The paper goes deep into the core question: How will AI agents reshape business operations, and how quickly can your company adapt to stay ahead? According to McKinsey, this is the ๐— ๐—”๐—œ๐—ก question every business need to answer today if they want to remain competitive tomorrow. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐—ธ๐—ฒ๐˜† ๐˜๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€: โฌ‡๏ธ โžœ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐——๐—ฟ๐—ถ๐˜ƒ๐—ฒ ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: AI agents are no longer just a tech trend; they are at the heart of reshaping business operations. The real challenge is how quickly companies can adapt their processes to leverage AI-driven automation and decision-making. โžœ ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜†-๐—ฆ๐—ฝ๐—ฒ๐—ฐ๐—ถ๐—ณ๐—ถ๐—ฐ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐˜€: AI agents need to be tailored to the unique challenges of different industries. Whether itโ€™s healthcare, finance, or manufacturing, customizing AI agents to solve specific industry problems can unlock higher efficiency and value. โžœ ๐—ฆ๐˜๐—ฟ๐—ผ๐—ป๐—ด ๐—š๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€ ๐—”๐—ฟ๐—ฒ ๐—˜๐˜€๐˜€๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น: Unlike traditional automation, AI agents require robust governance to ensure ethical behavior and compliance with regulations. Businesses need to establish clear policies to mitigate risks and build trust in AI systems. โžœ ๐—–๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—•๐—ฒ๐˜๐˜„๐—ฒ๐—ฒ๐—ป ๐—›๐˜‚๐—บ๐—ฎ๐—ป๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—”๐—œ: AI agents should enhance, not replace, human work. The real power lies in how AI agents can work alongside human expertise to free up employees for higher-level strategic tasks, making businesses more agile and competitive. โžœ ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐—ป๐˜๐—ฒ๐—ด๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† ๐—”๐—ฟ๐—ฒ ๐—–๐—ฟ๐—ถ๐˜๐—ถ๐—ฐ๐—ฎ๐—น: For AI agents to succeed, they must seamlessly integrate with existing data systems. Companies need to invest in scalable data infrastructure to handle the growing complexity of AI systems, ensuring they can expand as needed across various business functions. --- ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—บ๐—ถ๐—ด๐—ต๐˜ ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐˜๐—ต๐—ฒ ๐—ธ๐—ฒ๐˜† ๐˜๐—ผ ๐˜€๐˜๐—ฎ๐˜†๐—ถ๐—ป๐—ด ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฒ๐˜๐—ถ๐˜๐—ถ๐˜ƒ๐—ฒ. ๐— ๐—ฐ๐—ž๐—ถ๐—ป๐˜€๐—ฒ๐˜†'๐˜€ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—บ๐—ฎ๐—ธ๐—ฒ๐˜€ ๐—ถ๐˜ ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ: ๐˜๐—ต๐—ฒ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐—ด๐—ฒ๐˜ ๐—ฎ๐—ต๐—ฒ๐—ฎ๐—ฑ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—ฐ๐˜‚๐—ฟ๐˜ƒ๐—ฒ ๐—ป๐—ผ๐˜„ ๐˜„๐—ถ๐—น๐—น ๐—ฟ๐—ฒ๐—ฎ๐—ฝ ๐˜๐—ต๐—ฒ ๐—ฟ๐—ฒ๐˜„๐—ฎ๐—ฟ๐—ฑ๐˜€ ๐—ผ๐—ณ ๐—ถ๐—ป๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—ฒ๐—ณ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐˜†, ๐—ถ๐—ป๐—ป๐—ผ๐˜ƒ๐—ฎ๐˜๐—ถ๐—ผ๐—ป, ๐—ฎ๐—ป๐—ฑ ๐—บ๐—ฎ๐—ฟ๐—ธ๐—ฒ๐˜ ๐—ฑ๐—ผ๐—บ๐—ถ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ. Full report below or here: https://lnkd.in/dGXETSJY โฌ‡๏ธ Enjoy!


2k

"๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐˜„๐—ถ๐—น๐—น ๐—ฟ๐—ฒ๐˜ƒ๐—ผ๐—น๐˜‚๐˜๐—ถ๐—ผ๐—ป๐—ถ๐˜‡๐—ฒ ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€!" ๐—˜๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ ๐—”๐—œ ๐——๐—ฟ๐—ฒ๐—ฎ๐—บ: โžœ Deploy AI Agents โžœ Automate everything โžœ Enjoy efficiency ๐—˜๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ ๐—”๐—œ ๐—ฅ๐—ฒ๐—ฎ๐—น๐—ถ๐˜๐˜†: โžœ Messy, siloed, unreliable data โžœ AI hallucinations & compliance nightmares โžœ Enterprise AI initiatives stall as organizations spend more time fixing data issues than realizing AI-driven value. The Hard Truth: AI (agents) aren't failingโ€”data strategies are. AI Agents are only as effective as the data beneath them. Without governed, high-quality data, AI adoption becomes an expensive experiment instead of a strategic advantage. Important to fix the data first. Kudos for this image to Armand Ruiz!


    2k

    ๐——๐—ผ๐—ปโ€™๐˜ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ ๐—ฎ๐—ป ๐—”๐—œ ๐—ฆ๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜† ๐˜„๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐—น๐—น๐—ฒ๐—น ๐—ฝ๐—ฎ๐˜๐—ต๐—ถ๐—ป๐—ด ๐˜†๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜†! โฌ‡๏ธ And donโ€™t build your AI strategy in pure isolation. It seems to me that there are more and more enterprise AI roadmaps or AI-first company roadmaps. And yes, many of these strategies are well-informed, ambitious, and technically promising. But one foundational issue keeps surfacing: a lack of readiness in the underlying data infrastructure. AI โ€” whether applied or generative โ€” cannot deliver value without a solid, accessible, and trusted data ecosystem. And yet, many organizations are still underinvesting in this area, treating data as a side concern rather than the foundation it is. If your data landscape is fragmented, inaccessible, or of poor quality, no AI model โ€” no matter how advanced โ€” will produce meaningful results. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฟ๐—ฒ๐—ฒ ๐—ฐ๐—ผ๐—ป๐—ฐ๐—ฟ๐—ฒ๐˜๐—ฒ ๐˜€๐˜๐—ฒ๐—ฝ๐˜€ ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ๐˜€ ๐—ฐ๐—ฎ๐—ป ๐˜๐—ฎ๐—ธ๐—ฒ ๐˜๐—ผ ๐—ฏ๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—ฎ๐—น๐—ถ๐—ด๐—ป ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ฎ๐—ป๐—ฑ ๐—”๐—œ ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐—ถ๐—ฒ๐˜€: โฌ‡๏ธ 1. ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฎ๐—ป ๐—ถ๐—ป๐˜๐—ฒ๐—ด๐—ฟ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ด๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น. โžœ Establish a unified governance framework that spans both data management and AI oversight. This ensures consistency across how data is acquired, maintained, and used โ€” enabling AI systems to operate transparently, compliantly, and effectively. 2. ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜ ๐—ถ๐—ป ๐—ฎ ๐—ฑ๐—ฎ๐˜๐—ฎ-๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฐ๐˜‚๐—น๐˜๐˜‚๐—ฟ๐—ฒ. โžœ Technology alone wonโ€™t fix fragmented data. Organizations must embed data literacy across functions, prioritize clean and reusable data assets, and ensure cross-functional teams understand the strategic value of data in AI development. 3. ๐—”๐—น๐—ถ๐—ด๐—ป ๐—”๐—œ ๐—ฎ๐—ป๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜๐—ฒ๐—ฎ๐—บ๐˜€ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ ๐˜€๐—ต๐—ฎ๐—ฟ๐—ฒ๐—ฑ ๐—ด๐—ผ๐—ฎ๐—น๐˜€. โžœ Too often, AI initiatives are launched without proper collaboration with data teams. Ensure alignment through shared KPIs, integrated project planning, and clear ownership over the full data-to-AI lifecycle. Take for example GenAI: Both fine-tuning large models and implementing retrieval-augmented generation (RAG) approaches rely on the same prerequisites: high-quality, accessible, well-governed data. ๐—˜๐—ถ๐˜๐—ต๐—ฒ๐—ฟ ๐˜„๐—ฎ๐˜†, ๐—ป๐—ผ ๐—ด๐—ผ๐—ผ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ = ๐—ป๐—ผ ๐—ด๐—ผ๐—ผ๐—ฑ ๐—”๐—œ. ๐—”๐—œ ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐˜† ๐—ถ๐˜€ ๐—ป๐—ผ๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ ๐˜๐—ฒ๐—ฐ๐—ต ๐—ถ๐—ป๐—ถ๐˜๐—ถ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ โ€” ๐—ถ๐˜โ€™๐˜€ ๐—ฏ๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐˜๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป. ๐—”๐—ป๐—ฑ ๐—ถ๐˜ ๐—บ๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐˜€๐˜ ๐—ผ๐—ป ๐—ฎ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ถ๐—ป๐—ณ๐—ฟ๐—ฎ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ ๐˜๐—ต๐—ฎ๐˜โ€™๐˜€ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ฒ๐—ฑ ๐˜๐—ผ ๐˜€๐—ฐ๐—ฎ๐—น๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—ถ๐˜. ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ป๐—ผ๐˜ ๐—ถ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐—ฏ๐—ผ๐˜๐—ต ๐—ฎ๐˜ ๐˜๐—ต๐—ฒ ๐˜€๐—ฎ๐—บ๐—ฒ ๐˜๐—ถ๐—บ๐—ฒ, ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ป๐—ผ๐˜ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐—ถ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜. ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฏ๐—ผ๐˜๐—ต ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ด๐—ถ๐—ฒ๐˜€ ๐—ถ๐—ป ๐˜€๐˜†๐—ป๐—ฐ. ๐—ง๐—ต๐—ฎ๐˜โ€™๐˜€ ๐˜„๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ถ๐˜€ ๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜๐—ฒ๐—ฑ!


      1k

      ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œโ€™๐˜€ ๐˜‚๐—น๐˜๐—ถ๐—บ๐—ฎ๐˜๐—ฒ ๐—ด๐˜‚๐—ถ๐—ฑ๐—ฒ ๐˜๐—ผ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ท๐˜‚๐˜€๐˜ ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ! โฌ‡๏ธ If you're serious about AI Agents, this is the guide you've been waiting for. Itโ€™s packed with everything you need to build powerful AI agents. It follows a very hands-on approach that cuts down your time and avoids the common mistakes most developers make. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐˜๐—ผ๐—ฝ 10 ๐—ž๐—ฒ๐˜† ๐—ง๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ'๐˜€ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ: โžœ Agents = Autonomy: Unlike simple chatbots, agents are autonomous systems that can handle complex tasks, make decisions, and manage workflows without constant human input. They go beyond pre-programmed responses. โžœ When Should You Build an Agent? If your task requires nuanced decision-making or complex data handling, like fraud detection, claims processing, or automated content moderation, building an agent is your solution. โžœ Key Components of an Agent: Every agent relies on three crucial elements: a reasoning model (for decision-making), tools (for action), and instructions (for guiding behavior). Ensure these components are designed robustly for efficiency. โžœ Tools Empower Agents: Tools allow agents to interact with the external world, whether querying databases, making API calls, or sending emails. They significantly expand an agent's capabilities beyond just processing language. โžœ Clear Instructions Lead to Success: Avoid ambiguity in the instructions. The more specific and detailed your instructions are, the better the agent will perform, especially for complex tasks or edge cases. โžœ Start Simple, Then Scale: Start with a single-agent system to solve one task. Only expand to multi-agent systems when the complexity of the problem demands it. Managers can supervise multiple agents but start small for better control. โžœ Guardrails Are Essential: Build safety layers into your agents. Ensure they operate within desired parameters by setting up guardrails to prevent risky or undesirable behaviorsโ€”especially when dealing with sensitive data or high-stakes tasks. โžœ Incorporate Human Oversight: For high-risk operations, include human oversight. A "human-in-the-loop" approach allows for corrective actions before mistakes or undesirable outcomes occur, ensuring your agent stays on track. โžœ Iterate and Improve: Donโ€™t expect perfection at first. Launch small, validate with real users, and continuously improve. Agents evolve and become more valuable with each iteration as they learn and adapt to new tasks. ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ถ๐˜€ ๐—ป๐—ผ ๐—น๐—ผ๐—ป๐—ด๐—ฒ๐—ฟ ๐—ฎ ๐—ณ๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ ๐—ฐ๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜โ€”๐—ถ๐˜โ€™๐˜€ ๐˜๐—ต๐—ฒ ๐—ธ๐—ฒ๐˜† ๐˜๐—ผ ๐—ฑ๐—ฟ๐—ถ๐˜ƒ๐—ถ๐—ป๐—ด ๐—ถ๐—ป๐—ป๐—ผ๐˜ƒ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฎ๐—ป๐—ฑ ๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐˜€๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜€๐—ผ๐—น๐˜‚๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ๐—ฑ๐—ฎ๐˜†. Download below or access here: https://lnkd.in/d_ayffvZ ENJOY!


      1k

      ๐—ง๐—ต๐—ฒ ๐—บ๐—ผ๐˜€๐˜ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐—ฟ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฝ๐—ฎ๐—ฟ๐˜ ๐—ผ๐—ณ ๐—”๐—œ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜? ๐—ž๐—ป๐—ผ๐˜„๐—ถ๐—ป๐—ด ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€! You canโ€™t build efficient AI systemsโ€”or any scalable software productโ€”without understanding how data is organized, stored, and retrieved. These data structures power nearly everything we do online โ€” from scrolling social media to using AI assistants and navigating digital maps. ๐˜๐˜ฆ๐˜ณ๐˜ฆ ๐˜ข๐˜ณ๐˜ฆ 10 ๐˜ฅ๐˜ข๐˜ต๐˜ข ๐˜ด๐˜ต๐˜ณ๐˜ถ๐˜ค๐˜ต๐˜ถ๐˜ณ๐˜ฆ๐˜ด ๐˜บ๐˜ฐ๐˜ถ ๐˜ด๐˜ฉ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ข๐˜ค๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ถ๐˜ด๐˜ฆ ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ๐˜บ ๐˜ฅ๐˜ข๐˜บ (y๐˜ฆ๐˜ด, ๐˜ฆ๐˜ท๐˜ฆ๐˜ฏ ๐˜ช๐˜ง ๐˜บ๐˜ฐ๐˜ถโ€™๐˜ท๐˜ฆ ๐˜ฏ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ ๐˜ธ๐˜ณ๐˜ช๐˜ต๐˜ต๐˜ฆ๐˜ฏ ๐˜ข ๐˜ญ๐˜ช๐˜ฏ๐˜ฆ ๐˜ฐ๐˜ง ๐˜ค๐˜ฐ๐˜ฅ๐˜ฆ): โฌ‡๏ธ 1. ๐—Ÿ๐—ถ๐˜€๐˜ โ€“ ๐—ง๐˜„๐—ถ๐˜๐˜๐—ฒ๐—ฟ ๐—ณ๐—ฒ๐—ฒ๐—ฑ๐˜€:  โžœ Think of a simple chain of posts. Each tweet follows the last one. This is a list: organized, sequential, and easy to keep scrolling through. 2. ๐—”๐—ฟ๐—ฟ๐—ฎ๐˜† โ€“ ๐— ๐—ฎ๐˜๐—ต ๐—ผ๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€, ๐—น๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐—ฒ๐˜๐˜€: โžœ Arrays are like organized drawers. Each item is in a fixed position. Theyโ€™re used in calculations, spreadsheets, and AI models where fast access to numeric data is key. 3. ๐—ฆ๐˜๐—ฎ๐—ฐ๐—ธ โ€“ ๐—จ๐—ป๐—ฑ๐—ผ/๐—ฅ๐—ฒ๐—ฑ๐—ผ ๐—ถ๐—ป ๐—ช๐—ผ๐—ฟ๐—ฑ ๐—ฒ๐—ฑ๐—ถ๐˜๐—ผ๐—ฟ๐˜€: โžœ Ever hit "undo" in Microsoft Word? Thatโ€™s a stack at work. Last action goes on top, first to be undone. Like a stack of plates! 4. ๐—ค๐˜‚๐—ฒ๐˜‚๐—ฒ โ€“ ๐—ฃ๐—ฟ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ ๐—ท๐—ผ๐—ฏ๐˜€, ๐˜‚๐˜€๐—ฒ๐—ฟ ๐—ฎ๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ถ๐—ป ๐—ด๐—ฎ๐—บ๐—ฒ๐˜€: โžœ A queue works like a line at the bakery. First in, first out. Itโ€™s how your print jobs are handledโ€”or how game moves are processed one by one. 5. ๐—›๐—ฒ๐—ฎ๐—ฝ โ€“ ๐—ง๐—ฎ๐˜€๐—ธ ๐˜€๐—ฐ๐—ต๐—ฒ๐—ฑ๐˜‚๐—น๐—ถ๐—ป๐—ด:  โžœ Heaps prioritize. Theyโ€™re used to decide which task runs first on your computer or which ride you get in Uberโ€™s backend scheduling system. 6. ๐—ง๐—ฟ๐—ฒ๐—ฒ โ€“ ๐—›๐—ง๐— ๐—Ÿ ๐—ฑ๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐˜€, ๐—”๐—œ ๐—ฑ๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐˜๐—ฟ๐—ฒ๐—ฒ๐˜€: โžœ A tree is perfect for structured decisions. Websites use them to load content. AI uses them to make decisions (yes, like โ€œis this a cat or not?โ€). 7. ๐—ฆ๐˜‚๐—ณ๐—ณ๐—ถ๐˜… ๐—ง๐—ฟ๐—ฒ๐—ฒ โ€“ ๐—ฆ๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—ถ๐—ป ๐—ฑ๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐˜€:  โžœ Need to find a word fast in a massive document? Thatโ€™s what suffix trees do. Also used in code autocomplete and text processing. 8. ๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต โ€“ ๐—ฆ๐—ผ๐—ฐ๐—ถ๐—ฎ๐—น ๐—ป๐—ฒ๐˜๐˜„๐—ผ๐—ฟ๐—ธ๐˜€, ๐—ฝ๐—ฎ๐˜๐—ต๐—ณ๐—ถ๐—ป๐—ฑ๐—ถ๐—ป๐—ด:   โžœ Facebook friendships? Google Maps routes? Both run on graphs. They connect nodes (people, places) with relationships (friendship, roads). 9. ๐—ฅ-๐—ง๐—ฟ๐—ฒ๐—ฒ โ€“ ๐—™๐—ถ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐˜„๐—ต๐—ฎ๐˜'๐˜€ ๐—ฐ๐—น๐—ผ๐˜€๐—ฒ ๐—ฏ๐˜†:  โžœ Ever search โ€œrestaurants near meโ€? R-Trees help systems figure out whatโ€™s physically nearby. Used in mapping apps and autonomous vehicle sensors. 10. ๐—›๐—ฎ๐˜€๐—ต ๐—ง๐—ฎ๐—ฏ๐—น๐—ฒ โ€“ ๐—–๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ด ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€: โžœ Want lightning-fast data access? Hash tables map keys to values instantly. Used in browser caches, password lookups, and even AI memory storage. ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—ฎ๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ปโ€”๐—ณ๐—ฟ๐—ผ๐—บ ๐—–๐—ต๐—ฎ๐˜๐—š๐—ฃ๐—ง ๐˜๐—ผ ๐—ฎ๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐—ฐ๐—ฎ๐—ฟ๐˜€โ€”๐˜‚๐˜€๐—ฒ๐˜€ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ ๐˜๐—ผ ๐˜€๐˜๐—ผ๐—ฟ๐—ฒ, ๐—ฟ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฒ, ๐—ฎ๐—ป๐—ฑ ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ ๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป. Kudos to ByteByteGo for this brilliant overview!


      1k

      ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œโ€™๐˜€ ๐˜‚๐—น๐˜๐—ถ๐—บ๐—ฎ๐˜๐—ฒ ๐—ด๐˜‚๐—ถ๐—ฑ๐—ฒ ๐˜๐—ผ ๐—ถ๐—ฑ๐—ฒ๐—ป๐˜๐—ถ๐—ณ๐˜†๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐˜€๐—ฐ๐—ฎ๐—น๐—ถ๐—ป๐—ด ๐—”๐—œ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ ๐—ท๐˜‚๐˜€๐˜ ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ! โฌ‡๏ธ [๐˜ˆ๐˜ฏ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ ๐˜š๐˜๐˜–๐˜œ๐˜“๐˜‹ ๐˜ณ๐˜ฆ๐˜ข๐˜ฅ ๐˜ช๐˜ต ๐˜ช๐˜ง ๐˜บ๐˜ฐ๐˜ถ'๐˜ณ๐˜ฆ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ๐˜ช๐˜ฏ๐˜จ ๐˜ช๐˜ฏ ๐˜ฆ๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ฑ๐˜ณ๐˜ช๐˜ด๐˜ฆ ๐˜ˆ๐˜.] ๐—ง๐—ต๐—ฒ ๐—บ๐—ฎ๐—ท๐—ผ๐—ฟ ๐—ฐ๐—ต๐—ฎ๐—น๐—น๐—ฒ๐—ป๐—ด๐—ฒ๐˜€ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—ณ๐—ฎ๐—ฐ๐—ฒ ๐˜๐—ผ๐—ฑ๐—ฎ๐˜†: ๐—œ๐—ฑ๐—ฒ๐—ป๐˜๐—ถ๐—ณ๐˜†๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐˜€๐—ฐ๐—ฎ๐—น๐—ถ๐—ป๐—ด ๐—”๐—œ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐—ฎ๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐—ฑ๐—ฒ๐—น๐—ถ๐˜ƒ๐—ฒ๐—ฟ ๐˜๐—ฎ๐—ป๐—ด๐—ถ๐—ฏ๐—น๐—ฒ ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ. As AI continues to transform industries, itโ€™s not enough to simply implement technologyโ€”you need a strategic approach to find and scale the right use cases. ๐—”๐˜€ ๐—ฎ ๐˜€๐˜‚๐—บ๐—บ๐—ฎ๐—ฟ๐˜†, ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐—ณ๐—ถ๐˜ƒ๐—ฒ ๐—ธ๐—ฒ๐˜† ๐˜๐—ฎ๐—ธ๐—ฒ ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€: ๐—”๐—œ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—•๐—ฒ ๐—Ÿ๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐—Ÿ๐—ฒ๐—ฎ๐—ฑ๐—ฒ๐—ฟ๐˜€๐—ต๐—ถ๐—ฝ: โžœ AI adoption requires more than just a tech teamโ€”it needs leadership at the helm. Success hinges on clear vision and top-down commitment. Without strong leadership support, AI initiatives often fail to scale and deliver. ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ผ๐—ป ๐—›๐—ถ๐—ด๐—ต-๐—œ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜, ๐—Ÿ๐—ผ๐˜„-๐—˜๐—ณ๐—ณ๐—ผ๐—ฟ๐˜ ๐—จ๐˜€๐—ฒ ๐—–๐—ฎ๐˜€๐—ฒ๐˜€: โžœ Start with low-effort, high-impact use cases. These quick wins build momentum and deliver immediate value. Using the โ€œImpact/Effort Framework,โ€ companies can prioritize projects that offer the most benefit with minimal complexity. ๐—˜๐—บ๐—ฝ๐—น๐—ผ๐˜†๐—ฒ๐—ฒ ๐—˜๐—บ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—บ๐—ฒ๐—ป๐˜ ๐—ถ๐˜€ ๐—ž๐—ฒ๐˜† ๐˜๐—ผ ๐—”๐—œ ๐—ฆ๐˜‚๐—ฐ๐—ฐ๐—ฒ๐˜€๐˜€: โžœ Empower your employees to spot AI opportunities. By training them on basic AI concepts, companies can harness their creativity to integrate AI into their daily workflows, driving efficiencies at scale. ๐—ง๐—ฎ๐—ถ๐—น๐—ผ๐—ฟ ๐—”๐—œ ๐˜๐—ผ ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜†-๐—ฆ๐—ฝ๐—ฒ๐—ฐ๐—ถ๐—ณ๐—ถ๐—ฐ ๐—–๐—ต๐—ฎ๐—น๐—น๐—ฒ๐—ป๐—ด๐—ฒ๐˜€:   โžœ AI isnโ€™t one-size-fits-all. Customize it for your industryโ€™s specific challenges, whether in healthcare, finance, or manufacturing. Industry-tailored AI solutions are more effective and create greater operational efficiencies. ๐—œ๐˜๐—ฒ๐—ฟ๐—ฎ๐˜๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฒ ๐—จ๐˜€๐—ฒ ๐—–๐—ฎ๐˜€๐—ฒ๐˜€:   โžœ Start small and iterate. Begin with narrow applicationsโ€”like content creation or data analysisโ€”and scale them to address larger, multi-step workflows across departments. This iterative approach ensures steady growth and avoids overwhelming the organization. Scaling AI use cases is not just about technology; itโ€™s about aligning AI with business goals and fostering innovation. Only with the right strategy, companies can unlock AIโ€™s full potential!


      1k

      ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—ณ๐—ผ๐—น๐—น๐—ผ๐˜„ ๐˜๐—ต๐—ฒ ๐—ป๐—ฒ๐˜„๐˜€, ๐˜†๐—ผ๐˜‚โ€™๐˜ƒ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐—ฏ๐—ฎ๐—ฏ๐—น๐˜† ๐˜€๐—ฒ๐—ฒ๐—ป ๐—ถ๐˜ ๐—ฎ๐—น๐—น: ๐—”๐—œ ๐—ถ๐˜€ ๐—ฏ๐—ผ๐—ผ๐—บ๐—ถ๐—ป๐—ด. ๐—”๐—œ ๐—ถ๐˜€ ๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ต๐˜†๐—ฝ๐—ฒ๐—ฑ. ๐—”๐—œ ๐˜„๐—ถ๐—น๐—น ๐˜€๐—ฎ๐˜ƒ๐—ฒ ๐˜‚๐˜€. ๐—”๐—œ ๐˜„๐—ถ๐—น๐—น ๐—ฑ๐—ฒ๐˜€๐˜๐—ฟ๐—ผ๐˜† ๐—ท๐—ผ๐—ฏ๐˜€. The Stanford University AI Index 2025 cuts through all of it. Produced by the Institute for Human-Centered Artificial Intelligence, itโ€™s one of the most respected and data-driven reports on the state of AI today. Over 400+ pages of concrete insights โ€” from technical benchmarks and real-world adoption to policy shifts, economic impact, education, and public sentiment. ๐—ง๐—ต๐—ฒ 2025 ๐—ฒ๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐—น๐—ฎ๐˜€๐˜ ๐˜„๐—ฒ๐—ฒ๐—ธ. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ 12 ๐—ธ๐—ฒ๐˜† ๐˜๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€: 1. ๐—•๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐—ฏ๐—ฒ๐—ถ๐—ป๐—ด ๐—ฐ๐—ฟ๐˜‚๐˜€๐—ต๐—ฒ๐—ฑ. โž AI performance on complex reasoning and programming tasks surged by up to 67 percentage points in just one year. 2. ๐—”๐—œ ๐—ถ๐˜€ ๐—ป๐—ผ ๐—น๐—ผ๐—ป๐—ด๐—ฒ๐—ฟ ๐˜€๐˜๐˜‚๐—ฐ๐—ธ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—น๐—ฎ๐—ฏ. โž 223 FDA-approved AI medical devices. Over 150,000 autonomous rides weekly from Waymo. This is mainstream adoption. 3. ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—ถ๐˜€ ๐—ด๐—ผ๐—ถ๐—ป๐—ด ๐—ฎ๐—น๐—น-๐—ถ๐—ป.  โž $109B in U.S. private AI investment. 78% of organizations using AI. Productivity gains are no longer theoretical. 4. ๐—ง๐—ต๐—ฒ ๐—จ.๐—ฆ. ๐—น๐—ฒ๐—ฎ๐—ฑ๐˜€ ๐—ถ๐—ป ๐—พ๐˜‚๐—ฎ๐—ป๐˜๐—ถ๐˜๐˜†โ€”๐—–๐—ต๐—ถ๐—ป๐—ฎโ€™๐˜€ ๐—ฐ๐—ฎ๐˜๐—ฐ๐—ต๐—ถ๐—ป๐—ด ๐˜‚๐—ฝ ๐—ผ๐—ป ๐—พ๐˜‚๐—ฎ๐—น๐—ถ๐˜๐˜†.  โž Chinese models now rival U.S. models on MMLU, HumanEval, and more. Global AI is becoming a multi-polar game. 5. ๐—ฅ๐—ฒ๐˜€๐—ฝ๐—ผ๐—ป๐˜€๐—ถ๐—ฏ๐—น๐—ฒ ๐—”๐—œ ๐—ถ๐˜€ ๐—น๐—ฎ๐—ด๐—ด๐—ถ๐—ป๐—ด ๐—ฏ๐—ฒ๐—ต๐—ถ๐—ป๐—ฑ ๐—ถ๐—ป๐—ป๐—ผ๐˜ƒ๐—ฎ๐˜๐—ถ๐—ผ๐—ป. โž Incidents are rising, but standardized RAI benchmarks and audits are still rare.   Governments are stepping in faster than vendors. 6. ๐—š๐—น๐—ผ๐—ฏ๐—ฎ๐—น ๐—ผ๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜€๐—บ ๐—ถ๐˜€ ๐—ฟ๐—ถ๐˜€๐—ถ๐—ป๐—ดโ€”๐—ฏ๐˜‚๐˜ ๐—ป๐—ผ๐˜ ๐—ฒ๐˜ƒ๐—ฒ๐—ป๐—น๐˜†.   โž 83% of people in China are optimistic about AI. In the U.S., that number is just 39%. 7. ๐—”๐—œ ๐—ถ๐˜€ ๐—ด๐—ฒ๐˜๐˜๐—ถ๐—ป๐—ด ๐—ฐ๐—ต๐—ฒ๐—ฎ๐—ฝ๐—ฒ๐—ฟ, ๐˜€๐—บ๐—ฎ๐—น๐—น๐—ฒ๐—ฟ, ๐—ฎ๐—ป๐—ฑ ๐—ณ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ.  โž The cost of GPT-3.5-level inference dropped 280x in two years. Open-weight models are nearly matching closed ones. 8. ๐—š๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—บ๐—ฒ๐—ป๐˜๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐—ฟ๐—ฒ๐—ด๐˜‚๐—น๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—ถ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—ถ๐—ป๐—ด.  โž From Canadaโ€™s $2.4B to Saudi Arabiaโ€™s $100B pushโ€”states arenโ€™t watching from the sidelines anymore. 9. ๐—˜๐—ฑ๐˜‚๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ถ๐˜€ ๐—ฒ๐˜…๐—ฝ๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ดโ€”๐—ฏ๐˜‚๐˜ ๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—น๐—ฎ๐—ด๐˜€. โž Access is improving, but infrastructure gaps and lack of teacher training still limit global reach. 10. ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—ถ๐˜€ ๐—ฑ๐—ผ๐—บ๐—ถ๐—ป๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜.   โž 90% of top AI models now come from companiesโ€”not academia. The gap between top players is shrinking fast. 11. ๐—”๐—œ ๐—ถ๐˜€ ๐˜€๐—ต๐—ฎ๐—ฝ๐—ถ๐—ป๐—ด ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ.   โž AI-driven breakthroughs in physics, chemistry, and biology are earning Nobel Prizes and Turing Awards. 12. ๐—–๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜… ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด ๐—ฟ๐—ฒ๐—บ๐—ฎ๐—ถ๐—ป๐˜€ ๐˜๐—ต๐—ฒ ๐—ฐ๐—ฒ๐—ถ๐—น๐—ถ๐—ป๐—ด.   โž Despite all the progress, models still struggle with logic-heavy tasks. Precision is still a challenge. You can download the full report FREE here: https://lnkd.in/dzzuE5tN


      1k

      ๐——๐—ผ ๐˜†๐—ผ๐˜‚ ๐—ธ๐—ป๐—ผ๐˜„ ๐—ต๐—ผ๐˜„ ๐—บ๐˜‚๐—ฐ๐—ต ๐—ถ๐˜ ๐—ฐ๐—ผ๐˜€๐˜๐˜€ ๐˜๐—ผ ๐˜๐—ฟ๐—ฎ๐—ถ๐—ป ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ (๐—Ÿ๐—Ÿ๐— ๐˜€)? โฌ‡๏ธ AI training costs are exploding lately. The Stanford 2025 AI Index Report has released the latest AI training numbers last week and they are crazy: โ†’ Original Transformer Model: $930 โ†’ GPT-3: $4.3M โ†’ GPT-4: $78.4M โ†’ Llama 3.1-405B - $170M โ†’ Gemini 1.0 Ultra - $192M Training LLMs from scratch costs millions and these numbers are currently climbing even higher even higher with the development of the newest models. This is why primarily Big Tech companies and well-funded startups can afford to undertake such projects. But why is this the case? ๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐˜๐—ต๐—ฒ ๐—ฒ๐˜…๐—ฝ๐—น๐—ฎ๐—ป๐—ฎ๐˜๐—ถ๐—ผ๐—ป: 1๏ธโƒฃ ๐——๐—ฎ๐˜๐—ฎ: โ†’ Curating TBs of data and extensive pre-processing are needed. This involves collecting, cleaning, and organizing data to ensure the model trains on high-quality information. This task is resource-intensive, requiring significant time and manpower. 2๏ธโƒฃ ๐—”๐—œ ๐—ง๐—ฎ๐—น๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€: โ†’ Developing LLMs requires top researchers, with compensation at companies like OpenAI rumored up to $10M. A team of machine learning, data science, and linguistic experts is essential. They design neural networks, manage training processes, and assess performance. The significant cost of hiring and retaining this skilled workforce is crucial. 3๏ธโƒฃ ๐—”๐—œ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ: โ†’ Training and developing LLMs is incredibly expensive due to the vast computational resources required, with models like GPT-4 needing thousands of GPUs running for months (!). This extensive use of GPUs, combined with the need for continuous fine-tuning and experimentation, significantly drives up both the hardware and operational costs. ๐—ช๐—ต๐—ฎ๐˜ ๐—ฑ๐—ผ๐—ฒ๐˜€ ๐˜๐—ต๐—ถ๐˜€ ๐—บ๐—ฒ๐—ฎ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—ฏ๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€? Take existing LLM models and enhance them with your enterprise data using techniques like RAG or fine-tuning.


        1k

        Boston Consulting Group (BCG) ๐—ท๐˜‚๐˜€๐˜ ๐—ฑ๐—ฟ๐—ผ๐—ฝ๐—ฝ๐—ฒ๐—ฑ ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—น๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ฃ๐—ข๐—ฉ ๐—ผ๐—ป ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—ฃ๐—ฟ๐—ผ๐˜๐—ผ๐—ฐ๐—ผ๐—น (๐— ๐—–๐—ฃ)! The paper unpacks how autonomous agents are evolving, where they are already delivering real value, and why protocols like MCP (Model Context Protocol) and A2A (Agent-to-Agent Communication) are ๐—˜๐—ฆ๐—ฆ๐—˜๐—ก๐—ง๐—œ๐—”๐—Ÿ to scaling them securely and reliably across enterprises. If you are looking for an insightful read on why the real disruptive technology isn't AI, but AI Agents, this is a great paper! ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐˜€๐—ฒ๐˜ƒ๐—ฒ๐—ป ๐—ธ๐—ฒ๐˜† ๐˜๐—ฎ๐—ธ๐—ฒ๐—ฎ๐˜„๐—ฎ๐˜†๐˜€: 1. ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—”๐—ฟ๐—ฒ ๐— ๐—ผ๐˜ƒ๐—ถ๐—ป๐—ด ๐—™๐—ฟ๐—ผ๐—บ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜ ๐˜๐—ผ ๐—ฅ๐—ฒ๐—ฎ๐—น๐—ถ๐˜๐˜†: โžœ Early deployments are already delivering 30โ€“90% improvements in speed, productivity, and cost across coding, compliance, and supply chain domains. 2. ๐— ๐—–๐—ฃ ๐—œ๐˜€ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—•๐—ฎ๐—ฐ๐—ธ๐—ฏ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: โžœ The Model Context Protocol (MCP) is the new open standard adopted by Anthropic, OpenAI, Microsoft, Google, and Amazon to expose tools, prompts, and resources reliably. 3. ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐˜€ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—ฅ๐—ฎ๐—ฝ๐—ถ๐—ฑ๐—น๐˜†: โžœ Agents today can automate tasks up to one hour long โ€” and this limit is doubling every seven months, pushing toward multi-day autonomous workflows by the end of the decade. 4. ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ ๐— ๐˜‚๐˜€๐˜ ๐—•๐—ฒ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†-๐—™๐—ถ๐—ฟ๐˜€๐˜: โžœ Security challenges grow as agents gain system access. OAuth, RBAC, permission isolation, eval-driven development, and real-time monitoring are mandatory to deploy agents safely. 5. ๐—ง๐—ต๐—ฒ ๐—ฅ๐—ถ๐˜€๐—ฒ ๐—ผ๐—ณ ๐—”๐—ด๐—ฒ๐—ป๐˜-๐—ข๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ๐˜€: โžœ Platforms like Azure Foundry, Vertex AI, Bedrock Agents, and Lindy are positioning themselves as the orchestration layer to create, manage, and scale enterprise agent ecosystems. 6. ๐—™๐—ฟ๐—ผ๐—บ ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€ ๐˜๐—ผ ๐—™๐˜‚๐—น๐—น๐˜† ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: โžœ Enterprises are shifting from prompt chaining (rigid workflows) to fully autonomous agents capable of observing, reasoning, and acting dynamically based on real-world feedback. 7. ๐— ๐—–๐—ฃ ๐—ฎ๐—ป๐—ฑ ๐—”2๐—” ๐—ช๐—ถ๐—น๐—น ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ ๐˜๐—ต๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—˜๐—ฐ๐—ผ๐—ป๐—ผ๐—บ๐˜†: โžœ MCP connects agents to tools and data. A2A (Agent-to-Agent communication) will enable agents to negotiate, collaborate, and coordinate across systems โ€” forming true multi-agent networks. The agent economy is currently buildโ€” with real protocols, real deployments, and real technical foundations. Understanding it today means shaping the competitive advantage of tomorrow! You can download the document below! ENJOY!


        1k

        Anthropic ๐—ท๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—ฎ ๐—ฑ๐—ฒ๐—ป๐˜€๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐—ฝ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ผ๐—ป ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—ฒ๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€” ๐—ฝ๐—ฎ๐—ฐ๐—ธ๐—ฒ๐—ฑ ๐˜„๐—ถ๐˜๐—ต ๐—ฒ๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐—ฑ๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜๐˜€: โฌ‡๏ธ Not just marketing, BUT a real, practical blueprint for developers and teams building AI agents that actually work. It explains how Claude Code (tool for agentic coding) can function as a software developer: writing, reviewing, testing, and even managing Git workflows autonomously. BUT in my view: The principles and patterns described in this document are not Claude-specific. You can apply them to any coding agent โ€” from OpenAIโ€™s Codex to Goose, Aider, or even tools like Cursor and GitHub Copilot Workspace. ๐—›๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ 7 ๐—ธ๐—ฒ๐˜† ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ฏ๐—ฒ๐˜๐˜๐—ฒ๐—ฟ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€” ๐˜๐—ต๐—ฎ๐˜ ๐˜„๐—ผ๐—ฟ๐—ธ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐˜„๐—ผ๐—ฟ๐—น๐—ฑ: โฌ‡๏ธ 1. ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป โ‰  ๐—ท๐˜‚๐˜€๐˜ ๐—ฝ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด โžœ Itโ€™s not about clever prompts. Itโ€™s about building structured workflows โ€” where the agent can reason, act, reflect, retry, and escalate. Think of agents like software components: stateless functions wonโ€™t cut it. 2. ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐—ถ๐˜€ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ โžœ The way you manage and pass context determines how useful your agent becomes. Using summaries, structured files, project overviews, and scoped retrieval beats dumping full files into the prompt window. 3. ๐—ฃ๐—น๐—ฎ๐—ป๐—ป๐—ถ๐—ป๐—ด ๐—ถ๐˜€๐—ปโ€™๐˜ ๐—ผ๐—ฝ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น โžœ You canโ€™t expect an agent to solve multi-step problems without an explicit process. Patterns like plan > execute > review, tool use when stuck, or structured reflection are necessary. And they apply to all models, not just Claude. 4. ๐—ฅ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜๐—ผ๐—ผ๐—น๐˜€ โžœ Shell access. Git. APIs. Tool plugins. The agents that actually get things done use tools โ€” not just language. Design your agents to execute, not just explain. 5. ๐—ฅ๐—ฒ๐—”๐—ฐ๐˜ ๐—ฎ๐—ป๐—ฑ ๐—–๐—ผ๐—ง ๐—ฎ๐—ฟ๐—ฒ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€, ๐—ป๐—ผ๐˜ ๐—บ๐—ฎ๐—ด๐—ถ๐—ฐ ๐˜๐—ฟ๐—ถ๐—ฐ๐—ธ๐˜€ โžœ Donโ€™t just ask the model to โ€œthink step by step.โ€ Build systems that enforce that structure: reasoning before action, planning before code, feedback before commits. 6. ๐——๐—ผ๐—ปโ€™๐˜ ๐—ฐ๐—ผ๐—ป๐—ณ๐˜‚๐˜€๐—ฒ ๐—ฎ๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐˜† ๐˜„๐—ถ๐˜๐—ต ๐—ฐ๐—ต๐—ฎ๐—ผ๐˜€ โžœ Autonomous agents can cause damage โ€” fast. Define scopes, boundaries, fallback behaviors. Controlled autonomy > random retries. 7. ๐—ง๐—ต๐—ฒ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ถ๐˜€ ๐—ถ๐—ป ๐—ผ๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โžœ A good agent isnโ€™t just a wrapper around an LLM. Itโ€™s an orchestrator: of logic, memory, tools, and feedback. And if youโ€™re scaling to multi-agent setups โ€” orchestration is everything. Check the comments for the original material! Enjoy! Save ๐Ÿ’พ โžž React ๐Ÿ‘ โžž Share โ™ป๏ธ & follow for everything related to AI Agents!


        2k

        ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜†๐—ผ๐—ป๐—ฒโ€™๐˜€ ๐—ง๐—”๐—Ÿ๐—ž๐—œ๐—ก๐—š ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€. Very few can explain what they really are โ€” or why they matter. Letโ€™s fix that. Hereโ€™s the breakdown. โฌ‡๏ธ ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—ฎ๐—ป ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜? AI agents are software systems that use AI to pursue goals and complete tasks on behalf of users. They reason, plan, and act โ€” with memory and autonomy. And they operate in a continuous loop: 1๏ธโƒฃ Think โ€“ Process data and context 2๏ธโƒฃ Plan โ€“ Decide how to achieve the goal 3๏ธโƒฃ Act โ€“ Execute via tools, APIs, or interfaces 4๏ธโƒฃ Reflect โ€“ Evaluate results and adapt This feedback loop makes agents adaptive, iterative, and capable of learning. --- ๐—›๐—ผ๐˜„ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ช๐—ผ๐—ฟ๐—ธ (left panel): โžœ You delegate a task โžœ The agent takes autonomous action โžœ It connects to tools, APIs, or the web โ€” uses memory, adapts to input โžœ Youโ€™re still in control โ€” but it runs on its own Think of it as a smart intern that never sleeps โ€” and keeps improving. --- ๐—ง๐˜†๐—ฝ๐—ฒ๐˜€ ๐—ผ๐—ณ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ (middle panel): Different agents, different strengths โ€” just like any team: โžœ Simple Reflex Agents = rule-based triggers โžœ Model-Based = uses memory to guide decisions โžœ Goal-Based = acts with outcomes in mind โžœ Utility-Based = weighs options and tradeoffs โžœ Learning Agents = continuously improve You wouldnโ€™t run a business with just one intern โ€” same goes for agents. --- ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ (right panel): How you structure your agents matters just as much as what they can do: โžœ Single Agent = task-specific assistant โžœ Multi-Agent = agents coordinate and collaborate โžœ Human-Machine = agents work with humans in the loop --- And this is where most enterprises still struggle โ€” not with the technology, but with governance, security, and trust. AI agents arenโ€™t the future. Theyโ€™re already here. Most organizations just havenโ€™t figured out how to use them at scale โ€” yet. --- Kudos to ByteByteGo for this amazing graphic!


          2k

          ๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐—ต๐—ฎ๐—ป๐—ฑ๐˜€ ๐—ฑ๐—ผ๐˜„๐—ป ๐—ผ๐—ป๐—ฒ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—•๐—˜๐—ฆ๐—ง ๐˜ƒ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—ต๐—ผ๐˜„ ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐—ฎ๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐˜„๐—ผ๐—ฟ๐—ธ. โฌ‡๏ธ ๐˜“๐˜ฆ๐˜ต'๐˜ด ๐˜ฃ๐˜ณ๐˜ฆ๐˜ข๐˜ฌ ๐˜ช๐˜ต ๐˜ฅ๐˜ฐ๐˜ธ๐˜ฏ: ๐—ง๐—ผ๐—ธ๐—ฒ๐—ป๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด๐˜€: - Input text is broken into tokens (smaller chunks).   - Each token is mapped to a vector in high-dimensional space, where words with similar meanings cluster together.  ๐—ง๐—ต๐—ฒ ๐—”๐˜๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป ๐— ๐—ฒ๐—ฐ๐—ต๐—ฎ๐—ป๐—ถ๐˜€๐—บ (๐—ฆ๐—ฒ๐—น๐—ณ-๐—”๐˜๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป):   - Words influence each other based on context โ€” ensuring "bank" in riverbank isnโ€™t confused with financial bank.   - The Attention Block weighs relationships between words, refining their representations dynamically.  ๐—™๐—ฒ๐—ฒ๐—ฑ-๐—™๐—ผ๐—ฟ๐˜„๐—ฎ๐—ฟ๐—ฑ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ๐˜€ (๐——๐—ฒ๐—ฒ๐—ฝ ๐—ก๐—ฒ๐˜‚๐—ฟ๐—ฎ๐—น ๐—ก๐—ฒ๐˜๐˜„๐—ผ๐—ฟ๐—ธ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด)   - After attention, tokens pass through multiple feed-forward layers that refine meaning.   - Each layer learns deeper semantic relationships, improving predictions.  ๐—œ๐˜๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด - This process repeats through dozens or even hundreds of layers, adjusting token meanings iteratively.   - This is where the "deep" in deep learning comes in โ€” layers upon layers of matrix multiplications and optimizations.  ๐—ฃ๐—ฟ๐—ฒ๐—ฑ๐—ถ๐—ฐ๐˜๐—ถ๐—ผ๐—ป & ๐—ฆ๐—ฎ๐—บ๐—ฝ๐—น๐—ถ๐—ป๐—ด - The final vector representation is used to predict the next word as a probability distribution.   - The model samples from this distribution, generating text word by word.  ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐—บ๐—ฒ๐—ฐ๐—ต๐—ฎ๐—ป๐—ถ๐—ฐ๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐—ฎ๐˜ ๐˜๐—ต๐—ฒ ๐—ฐ๐—ผ๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—ฎ๐—น๐—น ๐—Ÿ๐—Ÿ๐— ๐˜€ (๐—ฒ.๐—ด. ๐—–๐—ต๐—ฎ๐˜๐—š๐—ฃ๐—ง). ๐—œ๐˜ ๐—ถ๐˜€ ๐—ฐ๐—ฟ๐˜‚๐—ฐ๐—ถ๐—ฎ๐—น ๐˜๐—ผ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐—ฎ ๐˜€๐—ผ๐—น๐—ถ๐—ฑ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—ต๐—ผ๐˜„ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—บ๐—ฒ๐—ฐ๐—ต๐—ฎ๐—ป๐—ถ๐—ฐ๐˜€ ๐˜„๐—ผ๐—ฟ๐—ธ ๐—ถ๐—ณ ๐˜†๐—ผ๐˜‚ ๐˜„๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐˜€๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ, ๐—ฟ๐—ฒ๐˜€๐—ฝ๐—ผ๐—ป๐˜€๐—ถ๐—ฏ๐—น๐—ฒ ๐—”๐—œ ๐˜€๐—ผ๐—น๐˜‚๐˜๐—ถ๐—ผ๐—ป๐˜€.  Here is the full video from 3Blue1Brown with exaplantion. I highly recommend to read, watch and bookmark this for a further deep dive: https://lnkd.in/dAviqK_6 Enjoy!


          4k

          ๐—ฅ๐—”๐—š ๐—ถ๐˜€ ๐—ป๐—ผ ๐—น๐—ผ๐—ป๐—ด๐—ฒ๐—ฟ ๐—ท๐˜‚๐˜€๐˜ โ€œ๐—ฟ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ฒ" ๐—ผ๐—ฟ ๐—ฎ ๐˜€๐—ถ๐—ป๐—ด๐—น๐—ฒ ๐—ฝ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ. ๐—œ๐˜โ€™๐˜€ ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ผ๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ป๐—ด ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ณ๐—ผ๐—ฟ ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ ๐—”๐—œ. โฌ‡๏ธ By early 2025, over 51% of enterprise GenAI deployments use RAG architectures โ€” up from 31% just a year earlier. And for good reason: itโ€™s powering everything from customer support and legal automation to search and content generation. BUT real-world complexity demands modular, dynamic, and intelligent system architectures โ€” not simplistic pipelines. What started as a simple retrieval pipeline (Naive RAG) is now evolving into the architectural backbone of large-scale, production-grade reasoning systems. Below is one of the clearest overviews of the evolving RAG design space โ€” from Naive setups to Agentic multi-system architectures. ๐—Ÿ๐—ฒ๐˜'๐˜€ ๐—ฏ๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—ถ๐˜ ๐—ฑ๐—ผ๐˜„๐—ป: โฌ‡๏ธ ๐—ก๐—ฎ๐—ถ๐˜ƒ๐—ฒ ๐—ฅ๐—”๐—š โžœ Retrieve documents, pass them to the LLM, generate an output. - Fast to build - Fragile when faced with ambiguity, long context, or conflicting information ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฒ-๐—ฎ๐—ป๐—ฑ-๐—ฅ๐—ฒ๐—ฟ๐—ฎ๐—ป๐—ธ ๐—ฅ๐—”๐—š โžœ Adds reranking to prioritize the most relevant information before generation. - Improves accuracy and grounding - Reduces risk of hallucinations ๐— ๐˜‚๐—น๐˜๐—ถ๐—บ๐—ผ๐—ฑ๐—ฎ๐—น ๐—ฅ๐—”๐—š โžœ Extends retrieval and reasoning to include text, images, video, and audio. - Critical for industries handling unstructured, diverse data types - Unlocks new applications in healthcare, legal, automotive, and manufacturing ๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต ๐—ฅ๐—”๐—š โžœ Incorporates graph databases for structured reasoning across entities and relationships. - Enables explainable AI - Essential for compliance, auditing, supply chain, and knowledge management ๐—›๐˜†๐—ฏ๐—ฟ๐—ถ๐—ฑ ๐—ฅ๐—”๐—š โžœ Blends vector search, keyword search, and graph retrieval strategies. - Maximizes robustness and adaptability across use cases - Balances precision and recall for production environments ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฅ๐—”๐—š (๐—ฅ๐—ผ๐˜‚๐˜๐—ฒ๐—ฟ) โžœ Uses agent-based orchestration to dynamically route queries to specialized tools, indexes, or retrieval strategies. - Intelligent query handling - Core enabler for autonomous workflows ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฅ๐—”๐—š โžœ Multiple agents collaborate, reason, retrieve, and act across distributed systems. - Supports complex planning, tool use, and decision-making - The foundation for enterprise-grade AI orchestration and multi-modal workflows ๐—ฅ๐—”๐—š ๐—ถ๐˜€๐—ปโ€™๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป โ€” ๐—ถ๐˜โ€™๐˜€ ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ณ๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐˜€๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ, ๐—ฝ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป-๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐—š๐—ฒ๐—ป๐—”๐—œ. ๐—˜๐—ฎ๐—ฐ๐—ต ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜€๐˜๐˜†๐—น๐—ฒ ๐˜€๐—ฒ๐—ฟ๐˜ƒ๐—ฒ๐˜€ ๐—ฎ ๐—ฑ๐—ถ๐˜€๐˜๐—ถ๐—ป๐—ฐ๐˜ ๐—ฝ๐˜‚๐—ฟ๐—ฝ๐—ผ๐˜€๐—ฒ โ€” ๐—ณ๐—ฟ๐—ผ๐—บ ๐˜€๐—ถ๐—บ๐—ฝ๐—น๐—ฒ ๐—ฟ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น ๐—ฝ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜…, ๐—บ๐˜‚๐—น๐˜๐—ถ-๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€. Kudos to Weaviate for this brilliant cheatsheet!


            5k

            ๐—ง๐—ต๐—ฒ ๐— ๐—ข๐—ฆ๐—ง ๐—ฑ๐—ถ๐˜€๐—ฟ๐˜‚๐—ฝ๐˜๐—ถ๐˜ƒ๐—ฒ ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐˜† ๐—ถ๐˜€ ๐—ก๐—ข๐—ง ๐—”๐—œ, ๐—ถ๐˜'๐˜€ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€! โฌ‡๏ธ Because with AI Agents, AI finally gets hands and feet โ€” and can start working on its own. This is the moment AI stops being a tool โ€” and starts acting like a team member. ๐— ๐—”๐—ก๐—ฌ ๐—ผ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—ฎ๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ณ๐—ผ๐—ฟ ๐—ฎ ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ! So here it is โ€” a practical breakdown of what AI Agents are, why they matter, and how to get started. 2025 will be the year AI Agents move from demo to deployment. And those who understand how to build with them โ€” will define the next era. To help you, I`ve attached a detailed roadmap made in collaboration with Rakesh Gohel (a true expert in the AI agent space!): โฌ‡๏ธ ๐Ÿ“Œ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น 1: ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€ ๐—ผ๐—ณ ๐— ๐—Ÿ ๐—ฎ๐—ป๐—ฑ ๐—š๐—ฒ๐—ป๐—”๐—œ - Basics of Python and Typescript Key Concepts to Learn: a. Data types and control structures. b. File I/O operations. c. Introduction to simple networks. - Basics of Machine Learning Key Concepts to Learn: a. Types of Machine Learning (Supervised, Unsupervised, Reinforcement). b. Neural Networks and Deep Learning fundamentals. c. Basics of Reinforcement Learning. - Basics of API Wrappers Key Concepts to Learn: a. Understanding different API types. b. Building GPT-based wrappers. c. Authentication and secure API communication. - Basics of Prompt Engineering Key Concepts to Learn: a. Chain of Thought and Graph of Thought prompting. b. Zero-shot and Few-shot techniques. c. Designing role-based prompts. - Basics of LLMs Key Concepts to Learn: a. Transformer models and MoE (Mixture of Experts). b. Fine-tuning LLMs for custom tasks. c. Understanding context windows. ๐Ÿ“Œ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น 2: ๐——๐—ฒ๐—ฒ๐—ฝ ๐——๐—ถ๐˜ƒ๐—ฒ ๐—ถ๐—ป๐˜๐—ผ ๐—ฅ๐—”๐—š๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ - Basics of RAGs Key Concepts to Learn: a. Embeddings and vector databases. b. Retrieval and generation models. - Basics of AI Agents Key Concepts to Learn: a. Different types of agents and their design patterns. b. Tools and agent memory management. - AI Agent Frameworks Key Concepts to Learn: a. Orchestration, planning, and feedback loops. b. Streaming agent workflows. - Multi-Agent Systems Key Concepts to Learn: a. Communication patterns and hand-offs. b. A2A (Agent-to-Agent) Protocols. - Evaluation and Observability Key Concepts to Learn: a. Metrics for evaluation (latency, stress tests, logging). b. Building observability for scalable AI agents. ๐—ง๐—ต๐—ถ๐˜€ ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐˜„๐—ถ๐—น๐—น ๐—ต๐—ฒ๐—น๐—ฝ ๐˜†๐—ผ๐˜‚ ๐—บ๐—ผ๐˜ƒ๐—ฒ ๐—บ๐˜‚๐—ฐ๐—ต ๐—ณ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ถ๐—ป ๐—บ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€๐—… ๐—ฃ๐—Ÿ๐—จ๐—ฆ: ๐—œโ€™๐˜ƒ๐—ฒ ๐—ฒ๐˜ƒ๐—ฒ๐—ป ๐—ฎ๐˜๐˜๐—ฎ๐—ฐ๐—ต๐—ฒ๐—ฑ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฐ๐—ผ๐—บ๐—บ๐—ฒ๐—ป๐˜๐˜€ ๐˜๐—ผ ๐—ด๐—ฒ๐˜ ๐˜†๐—ผ๐˜‚ ๐˜€๐˜๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฑ. --- Save ๐Ÿ’พ โžž React ๐Ÿ‘ โžž Share โ™ป๏ธ & follow for everything related to AI Agent


              4k

              ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ ๐—ท๐˜‚๐˜€๐˜ ๐—ฝ๐˜‚๐—ฏ๐—น๐—ถ๐˜€๐—ต๐—ฒ๐—ฑ ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—ผ๐—ณ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—š๐—ฃ๐—ง-4.1 ๐—ฝ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด ๐—ด๐˜‚๐—ถ๐—ฑ๐—ฒ! It provides a detailed guide on how to steer GPT-4.1 with precision, including examples, tips, and advanced techniques. You can access the full version for free below. โฌ‡๏ธ ๐—œ๐—ป ๐˜€๐˜‚๐—บ๐—บ๐—ฎ๐—ฟ๐˜†, ๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐—ธ๐—ฒ๐˜† ๐—ฒ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐˜€: โžœ Be Clear with Your Instructions: GPT-4.1 is really good at following directions, but only if you're specific. The more clear and direct your prompt, the better the response. โžœ Break Down Complex Tasks: If you're working on something complicated, ask GPT-4.1 to โ€œthink step by step.โ€ It helps the model give more accurate and thoughtful answers. โžœ Use Structure: If you need to share a lot of info, use clear structureโ€”like markdown or bullet points. This helps GPT-4.1 understand and organize the info better. โžœ Format Your Prompts with Clear Sections: Structure your prompts for easier comprehension:   - Role and Objective   - Instructions (with subcategories)   - Reasoning Steps   - Output Format   - Examples   - Final instructions โžœ Put Important Instructions at the Start and End: For longer prompts, put your key instructions both at the beginning and the end. This helps the model stay on track. โžœ Guide It with Reminders: If you're designing a workflow or solving a problem, include reminders like โ€œkeep going until itโ€™s fully resolvedโ€ or โ€œplan carefully before acting.โ€ This keeps the model focused. โžœ Use the Token Window Wisely: GPT-4.1 can handle a huge amount of text, but too much at once can slow it down. Be strategic about how much context you provide. โžœ Balance Internal and External Knowledge: For factual questions, tell GPT-4.1 to either โ€œonly use the provided contextโ€ or to mix that context with general knowledge. This helps you get the most accurate results. ๐—œ๐—ป ๐˜€๐—ต๐—ผ๐—ฟ๐˜: ๐—ง๐—ต๐—ฒ ๐—ธ๐—ฒ๐˜† ๐˜๐—ผ ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐—š๐—ฃ๐—ง-4.1 ๐—ฒ๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ๐—น๐˜† ๐—ถ๐˜€ ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ, ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐—ฝ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐—ด๐˜‚๐—ถ๐—ฑ๐—ฒ ๐—ถ๐˜ ๐˜๐—ผ๐˜„๐—ฎ๐—ฟ๐—ฑ ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐—ฎ๐—ป๐˜€๐˜„๐—ฒ๐—ฟ. ๐—œ๐˜โ€™๐˜€ ๐—ฎ๐—น๐—น ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—ฎ๐˜€๐—ธ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐˜„๐—ฎ๐˜†! Access it here or download it below: https://lnkd.in/dCm6DeFW


              3k

              ๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐—ต๐—ผ๐˜„ ๐—š๐—ฒ๐—ป๐—”๐—œ ๐—ณ๐—ถ๐—ป๐—ฑ๐˜€ ๐—บ๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐˜‚๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐˜๐—ฒ๐˜…๐˜. โฌ‡๏ธ And yes it all starts with vector databases โ€” not magic. This is the mechanism that powers AI Agent memory, RAG and semantic search. And this diagram below? Nails the entire flow โ€” from raw data to relevant answers. Let's break it down (the explanation shows of how a vector database works โ€” using the simple example prompt: โ€œWho am I): โฌ‡๏ธ 1. ๐—œ๐—ป๐—ฝ๐˜‚๐˜: โžœ There are two inputs: Data = the source text (docs, chat history, product descriptions...) and the query = the question or prompt youโ€™re asking. These are processed in exactly the same way โ€” so they can be compared mathematically later. 2. ๐—ช๐—ผ๐—ฟ๐—ฑ ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด โžœ Each word (like โ€œhowโ€, โ€œareโ€, โ€œyouโ€) is transformed into a list of numbers โ€” a word embedding. These word embeddings capture semantic meaning, so that for example "bank" (money) and "finance" land closer than "bank" (river). This turns raw text into numerical signals. 3. ๐—ง๐—ฒ๐˜…๐˜ ๐—˜๐—บ๐—ฏ๐—ฒ๐—ฑ๐—ฑ๐—ถ๐—ป๐—ด ๐—ฃ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ โžœ Both data and query go through this stack: - Encoder: Transforms word embeddings based on their context (e.g. transformers like BERT). - Linear Layer: Projects these high-dimensional embeddings into a more compact space. -ReLU Activation: Introduces non-linearity โ€” helping the model focus on important features. The output? A single text embedding that represents the entire sentence or chunk. 4. ๐— ๐—ฒ๐—ฎ๐—ป ๐—ฃ๐—ผ๐—ผ๐—น๐—ถ๐—ป๐—ด โžœ Now we take the average of all token embeddings โ€” one clean vector per chunk. This is the "semantic fingerprint" of your text. 5. ๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—ถ๐—ป๐—ด โžœ All document vectors are indexed โ€” meaning theyโ€™re structured for fast similarity search. This is where vector databases like FAISS or Pinecone come in. 6. ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น (๐——๐—ผ๐˜ ๐—ฃ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜ & ๐—”๐—ฟ๐—ด๐—บ๐—ฎ๐˜…) โžœ When you submit a query.: The query is also embedded and pooled into a vector. The system compares your query to all indexed vectors using dot product โ€” a measure of similarity. Argmax finds the closest match โ€” i.e. the most relevant chunk. This is semantic search at work. - Keyword search finds strings. - Vector search finds meaning. 7. ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐—ฆ๐˜๐—ผ๐—ฟ๐—ฎ๐—ด๐—ฒ โžœ All document vectors live in persistent vector storage โ€” always ready for future retrieval and use by the LLM. This is basically the database layer behind: - RAG - Semantic search - Agent memory - Enterprise GenAI apps - etc. ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐—Ÿ๐—Ÿ๐— ๐˜€ โ€” ๐˜๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐˜๐—ต๐—ฒ ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ผ๐—ป. Kudos to Tom Yeh for this brilliant visualization!


                3k

                ๐—ง๐—ต๐—ฒ ๐—ฏ๐—ถ๐—ด๐—ด๐—ฒ๐˜€๐˜ ๐—ฐ๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—บ๐—ถ๐˜€๐˜๐—ฎ๐—ธ๐—ฒ ๐—ถ๐—ป 2025? ๐—ง๐—ต๐—ถ๐—ป๐—ธ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ฑ๐—ผ๐—ฒ๐˜€๐—ปโ€™๐˜ ๐—ฎ๐—ฝ๐—ฝ๐—น๐˜† ๐˜๐—ผ ๐˜†๐—ผ๐˜‚. Mastering AI isnโ€™t optional anymore. Itโ€™s the difference between leading and being replaced. Regardless of your professional role, it's crucial to have a grasp of the fundamentals. BUT most professionals struggle to break into AI because they lack a structured learning approach. They either drown in theory or jump in without fundamentals. ๐—ง๐—ต๐—ถ๐˜€ ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐˜€ ๐˜๐—ต๐—ฎ๐˜! ๐—Ÿ๐—ฒ๐˜'๐˜€ ๐—ฏ๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—ถ๐˜ ๐—ฑ๐—ผ๐˜„๐—ป: 1. ๐—จ๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ ๐—”๐—œ โ€“ Know the difference between ML, Deep Learning, and Generative AI. 2. ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐˜๐—ต๐—ฒ ๐—ณ๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐˜€ โ€“ Probability, statistics, linear algebra. AI is built on math. 3. ๐—ž๐—ป๐—ผ๐˜„ ๐˜๐—ต๐—ฒ ๐—ณ๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ โ€“ GPT, Llama, Gemini. Understand how they work, not just how to use them. 4. ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐˜„๐—ถ๐˜๐—ต ๐˜๐—ต๐—ฒ ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐˜€๐˜๐—ฎ๐—ฐ๐—ธ โ€“ Python, Langchain, VectorDB. AI is an engineering discipline. 5. ๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป ๐—ณ๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ ๐˜†๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐—น๐—ณ โ€“ Data collection, tokenization, evaluation. No black boxes. 6. ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ Automate workflows, integrate human oversight, build real-world applications. 7. ๐—š๐—ฒ๐—ป๐—”๐—œ ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป โ€“ GANs, DALLยทE, Midjourney. AI isnโ€™t just about chatbots. 8. ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐—ฎ๐—ด๐—ฒ ๐˜๐—ผ๐—ฝ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฟ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ โ€“ Kaggle, DeepLearning.AI, Nvidia. Learn from those driving the field forward. The best part is that most of the stuff is completely free of charge and you just have to invest your time. Is anything missing from your view? --- Kudos to ByteByteGo for this amazing graphic!


                  3k

                  ๐—œ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ฎ๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€, ๐˜†๐—ผ๐˜‚ ๐—ก๐—˜๐—˜๐—— ๐—ง๐—ข ๐—ž๐—ก๐—ข๐—ช ๐˜๐—ต๐—ถ๐˜€ ๐˜€๐—ถ๐˜… ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€! ๐Ÿ› ๏ธ AI Agents are evolving fast, opening up many possibilities for a new paradigm of applications. In today's world, we use LLMs mostly in zero-shot mode, in which a model generates final output token by token without revising its work. With an agent workflow, we can ask the LLM to iterate over certain output many times. There are many tools and possibilities for AI agents today, creating both exciting opportunities and a lot of noise. To cut through the confusion, hereโ€™s a framework of six key design patterns you can leverage to build powerful, scalable agentic applications: Letโ€™s break it down: โฌ‡๏ธ 1. ๐—ฅ๐—ฒ๐—”๐—ฐ๐˜ ๐—”๐—ด๐—ฒ๐—ป๐˜   Thinks, takes action, looks at the result, repeats.   Classic loop: โ€œShould I Google this?โ€ โ†’ Does it โ†’ Adjusts.   โ†’ Used in most AI products today (like basic chat assistants). 2. ๐—–๐—ผ๐—ฑ๐—ฒ๐—”๐—ฐ๐˜ ๐—”๐—ด๐—ฒ๐—ป๐˜: Runs real code, not just JSON.   So instead of saying โ€œcall API X,โ€ it writes and runs a Python script.   โ†’ More powerful. Used in research agents and dev assistants. 3. ๐— ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐—ป ๐—ง๐—ผ๐—ผ๐—น ๐—จ๐˜€๐—ฒ: Sends tasks to smart APIs (search, cloud, data), and lets them do the heavy lifting.   The agent mostly routes and formats info.   โ†’ Think: a smart middleman between you and powerful services. 4. ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ฅ๐—ฒ๐—ณ๐—น๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป: Agent checks its own work.   Did it make a mistake? It catches it, critiques it, and tries again.   โ†’ Most AI errors happen **because this step is missing.** 5. ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„:  One agent isnโ€™t doing everything.   You have a planner, a researcher, and a writer โ€” all working together.   โ†’ Like a mini team of AIs. More accurate. Less chaos. 6. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฅ๐—”๐—š:  This is what powers apps like Perplexity.   The agent looks stuff up (retrieval), thinks about it, uses tools, and gives you a smarter answer.   โ†’ Works with real-time data, not just model memory. ๐—จ๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€ ๐—ฐ๐—ฎ๐—ป ๐—ถ๐—บ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ-๐˜€๐—ผ๐—น๐˜ƒ๐—ถ๐—ป๐—ด, ๐—ฐ๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป, ๐—ฎ๐—ป๐—ฑ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ, ๐—น๐—ฒ๐—ฎ๐—ฑ๐—ถ๐—ป๐—ด ๐˜๐—ผ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐˜€๐—ผ๐—ฝ๐—ต๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฎ๐—ป๐—ฑ ๐—ฟ๐—ฒ๐—น๐—ถ๐—ฎ๐—ฏ๐—น๐—ฒ ๐—”๐—œ ๐—ฎ๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€. ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐˜€ ๐—ฎ๐—น๐—ผ๐—ป๐—ฒ ๐˜„๐—ผ๐—ปโ€™๐˜ ๐—ด๐—ฒ๐˜ ๐˜†๐—ผ๐˜‚ ๐˜๐—ผ ๐—ฝ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป   โ†’ ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐—ฎ๐—ฟ๐—ฒ ๐˜€๐—บ๐—ฎ๐—ฟ๐˜ โ€” ๐—ฏ๐˜‚๐˜ ๐˜€๐˜๐—ฎ๐˜๐—ถ๐—ฐ   โ†’ ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ ๐˜„๐—ถ๐—ป. ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—บ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€. [๐—ก๐—ผ๐˜๐—ฒ ๐˜๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ฒ๐˜€๐—ฒ ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€ ๐—ฐ๐—ฎ๐—ป ๐—ฏ๐—ฒ ๐˜‚๐˜€๐—ฒ๐—ฑ ๐˜๐—ผ๐—ด๐—ฒ๐˜๐—ต๐—ฒ๐—ฟ, ๐—ป๐—ผ๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—ฒ๐˜…๐—ฐ๐—น๐˜‚๐˜€๐—ถ๐˜ƒ๐—ฒ๐—น๐˜†.] ๐Ÿ› ๏ธ These patterns are adapted from the Agentic Design Patterns blog series from Andrew Ng (find more in the comments). Save ๐Ÿ’พ โžž React ๐Ÿ‘ โžž Share โ™ป๏ธ & follow for everything related to AI Agents. Kudos to Rakesh Gohel for this excellent visualization!


                    7k

                    ๐—ช๐—ต๐—ฎ๐˜ ๐—ฎ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐—บ๐—ผ๐˜€๐˜ ๐—ฐ๐—ผ๐—บ๐—บ๐—ผ๐—ป ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐˜‚๐˜€๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€ ๐—ถ๐—ป 2025? Given the pace of adoption, one thing is clear: In 12 months, every enterprise workflow will involve AI agents. Not might. Not could. Will. So itโ€™s worth taking a closer look at how this is already playing out. Here are some of the most common and impactful AI agent use cases weโ€™re seeing across industries in 2025. Let's break it down: โฌ‡๏ธ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฅ๐—”๐—š: Retrieval-Augmented Generation reimagined. These agents donโ€™t just retrieve knowledge โ€” they evaluate sources, reason over them, and produce contextually grounded answers. Used for internal knowledge assistants, intelligent documentation, and enterprise Q&A. Examples: IBM watsonx, Perplexity AI, Glean etc. ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„ ๐—”๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€:   These agents orchestrate tasks across systems. Triggered by APIs, UI actions, or internal events, they can perform multi-step processes without human involvement. Think automated onboarding flows, approvals, or back-office operations. Very easy to build for everybody. Examples: Make.com, Flowise, n8n, Relevance AI etc. ๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: AI-powered development assistants that go beyond code suggestions. These agents can plan, refactor, debug, and even reason across repositories. Ideal for accelerating software engineering teams or bootstrapping prototypes. Examples: Cursor, Roo Code, Windsurf etc. ๐—ง๐—ผ๐—ผ๐—น-๐—•๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€:   Niche, high-utility agents designed to perform well-defined tasks with specific tools โ€” from sending emails to querying internal search engines. These agents are easy to deploy and integrate into targeted workflows. Examples: Breeze, Clay etc. ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ ๐—จ๐˜€๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€:  The most ambitious โ€” and most misunderstood. These agents donโ€™t just call APIs. They use the UI. Navigating browsers. Typing into forms. Clicking buttons. Agents that act like humans, powered by models like Claude and GPT-4. ๐—ฉ๐—ผ๐—ถ๐—ฐ๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€: Where GenAI meets the phone line. These agents handle support calls, internal queries, and sales outreach... all with voice. Examples: ElevenLabs, Vapi, and others etc. This isnโ€™t theoretical โ€” itโ€™s already happening. AI agent use cases are rapidly maturing, moving from prototypes to production across industries. And if your strategy still revolves around chatbots, youโ€™re already behind. ๐—ง๐—ต๐—ฒ ๐—ป๐—ฒ๐˜…๐˜ 12 ๐—บ๐—ผ๐—ป๐˜๐—ต๐˜€ ๐˜„๐—ถ๐—น๐—น ๐—ฏ๐—ฒ ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ๐—ฑ ๐—ฏ๐˜† ๐˜๐—ต๐—ผ๐˜€๐—ฒ ๐˜„๐—ต๐—ผ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป, ๐—ฐ๐—ผ๐—บ๐—ฏ๐—ถ๐—ป๐—ฒ, ๐—ฎ๐—ป๐—ฑ ๐—ผ๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ฒ ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜ ๐˜๐˜†๐—ฝ๐—ฒ๐˜€ ๐—ผ๐—ณ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ถ๐—ป๐˜๐—ผ ๐—ฟ๐—ฒ๐—ฎ๐—น, ๐˜€๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€. ๐—ง๐—ต๐—ถ๐˜€ ๐—ถ๐˜€ ๐˜„๐—ต๐—ฒ๐—ฟ๐—ฒ ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฒ๐˜๐—ถ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฎ๐—ฑ๐˜ƒ๐—ฎ๐—ป๐˜๐—ฎ๐—ด๐—ฒ ๐˜„๐—ถ๐—น๐—น ๐—ฏ๐—ฒ ๐—ฏ๐˜‚๐—ถ๐—น๐˜. Kudos to Rakesh Gohel for this excellent visualization!


                      6k

                      ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ ๐—ท๐˜‚๐˜€๐˜ ๐—น๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ ๐˜€๐—ผ๐—บ๐—ฒ๐˜๐—ต๐—ถ๐—ป๐—ด ๐—•๐—œ๐—š โ€” ๐—ฎ๐—ป๐—ฑ ๐—ฏ๐—ฎ๐—ฟ๐—ฒ๐—น๐˜† ๐—ฎ๐—ป๐˜†๐—ผ๐—ป๐—ฒ ๐—ถ๐˜€ ๐˜๐—ฎ๐—น๐—ธ๐—ถ๐—ป๐—ด ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—ถ๐˜! Yesterday, I spent a few hours diving into the newly launched "๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ ๐—”๐—ฐ๐—ฎ๐—ฑ๐—ฒ๐—บ๐˜†". And it's an absolute goldmine of FREE AI education, packed with tutorials, live workshops, labs and real-world case studies. Whether you're just starting or already building with GPTs โ€” thereโ€™s definitely something here for you. And itโ€™s all 100% FREE and beginner-friendly tracks (no code needed). Here is some stuff to have an eye on: ๐—จ๐—ฝ๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐—ช๐—ฒ๐—ฏ๐—ถ๐—ป๐—ฎ๐—ฟ๐˜€: โ€“ Introduction to ChatGPT: https://lnkd.in/e4dgUbWj โ€“ AI in Action: Uses for Work, Learning & Life: https://lnkd.in/efXpXY_9 ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜ƒ๐—ฒ๐—ฑ ๐—ช๐—ฒ๐—ฏ๐—ถ๐—ป๐—ฎ๐—ฟ๐˜€: โ€“ ChatGPT 101: A Guide to Your Super Assistant: https://lnkd.in/e6RJMcEC โ€“ ChatGPT 102: Using AI to Do Your Best Work: https://lnkd.in/eF4iQfFz โ€“ Advanced Prompt Engineering: https://lnkd.in/eb9JGYkY ๐—–๐—ต๐—ฎ๐˜๐—š๐—ฃ๐—ง ๐—ฎ๐˜ ๐—ช๐—ผ๐—ฟ๐—ธ ๐—–๐—ผ๐—น๐—น๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป: โ€“ ChatGPT Search: https://lnkd.in/e8fRSkPT โ€“ ChatGPT for Data Analysis: https://lnkd.in/ezssYnGk โ€“ Introduction to GPTs: https://lnkd.in/eiUCDF9u ๐—–๐—ต๐—ฎ๐˜๐—š๐—ฃ๐—ง ๐—ผ๐—ป ๐—–๐—ฎ๐—บ๐—ฝ๐˜‚๐˜€ ๐—–๐—ผ๐—น๐—น๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป: โ€“ AI for Academic Success: https://lnkd.in/e9hPwRsF   โ€“ AI for Career Prep: Resumes & Interviews: https://lnkd.in/ezK62jzQ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—ฒ๐—ฟ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—›๐—ผ๐˜‚๐—ฟ๐˜€ ๐—–๐—ผ๐—น๐—น๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป:   โ€“ Fine-Tuning: https://lnkd.in/e2iqWD7J โ€“ Assistants & Agents: https://lnkd.in/em6FBu2Q Link to the academy: https://lnkd.in/d8GK4sC4 Definitely very interesting to see that OpenAI is now also building their own learning ecosystem. ENJOY!


                        5k

                        Want to drive more opportunities from LinkedIn?

                        Content Inspiration, AI, scheduling, automation, analytics, CRM.

                        Get all of that and more in Taplio.

                        Try Taplio for free

                        Famous LinkedIn Creators to Check Out

                        Sahil Bloom

                        @sahilbloom

                        Sahil Bloom is the New York Times Bestselling author of The 5 Types of Wealth: A Transformative Guid...

                        1m

                        Followers

                        Vaibhav Sisinty โ†—๏ธ

                        @vaibhavsisinty

                        I'm an engineer turned marketer, now a founder. I've worked at Uber and Klook, focusing on marketi...

                        451k

                        Followers

                        Richard Moore

                        @richardjamesmoore

                        โฉYou know how all the clients you'll ever work with are on LinkedIn, right? But you struggle to gene...

                        105k

                        Followers

                        Shlomo Genchin

                        @shlomogenchin

                        Hey! Here are 3 ways I can help you: 1๏ธโƒฃ Talks and Workshops: I'll show your team, or students, how...

                        49k

                        Followers

                        Sam G. Winsbury

                        @sam-g-winsbury

                        We turn entrepreneurs into credible thought leaders through personal branding so they can scale thei...

                        49k

                        Followers

                        Hi! Iโ€™m Daniel. Iโ€™m the creator of The Marketing Millennials and the founder of Authority, a B2B Lin...

                        150k

                        Followers

                        Matt Gray

                        @mattgray1

                        Over the last decade, Iโ€™ve built 4 successful companies and a community of over 14 million people. ...

                        1m

                        Followers

                        Izzy Prior

                        @izzyprior

                        No matter how outrageously amazing your mission is, it's likely you're not seeing the results you ne...

                        82k

                        Followers

                        Ash Rathod

                        @ashrathod

                        You already know storytelling is essential for your business and brand. But storytelling is much m...

                        73k

                        Followers

                        Justin Welsh

                        @justinwelsh

                        Over the last decade, I helped build two companies past a $1B valuation and raise over $300M in vent...

                        1m

                        Followers

                        Andy Mewborn

                        @amewborn

                        I use to be young & cool. Now I do b2b SaaS. Husband. Dad. Ironman. Founder of Distribute // Co-fo...

                        213k

                        Followers

                        Wes Kao

                        @weskao

                        Wes Kao is an entrepreneur, coach, and advisor who writes at newsletter.weskao.com. She is co-founde...

                        107k

                        Followers

                        Sabeeka Ashraf

                        @sabeekaashraf

                        On January 8th my "one day" became DAY ONE ... 7 days earlier I downgraded my life into a suitcase....

                        20k

                        Followers

                        Amelia Sordell ๐Ÿ”ฅ

                        @ameliasordell

                        Klowt builds personal brands. I founded the business after realising that the best leads came throu...

                        228k

                        Followers

                        Tibo Louis-Lucas

                        @thibaultll

                        Founder Prev Taplio & Tweet Hunter (sold) Building Typeframes & revid.ai Invested in animstats.com ...

                        6k

                        Followers

                        Luke Matthews

                        @lukematthws

                        LinkedIn has changed. You need to change too. Hey I'm Luke, I've been marketing for 5+ years on ...

                        188k

                        Followers

                        Guillaume Moubeche

                        @-g-

                        If youโ€™re here, that's because you know that your personal growth will drive your business growth ๐Ÿš€...

                        80k

                        Followers

                        Austin Belcak

                        @abelcak

                        CultivatedCulture.com/Coaching // I teach people how to land jobs they love in today's market withou...

                        1m

                        Followers