Get the Linkedin stats of Andreas Horn and many LinkedIn Influencers by Taplio.
open on linkedin
Innovation is not just about creating the future, but about shaping it with purpose and imagination. [All opinions are my own and don't represent my employer.]
Check out Andreas Horn's verified LinkedIn stats (last 30 days)
Use Taplio to search all-time best posts
Anthropic ๐ท๐๐๐ ๐ฟ๐ฒ๐น๐ฒ๐ฎ๐๐ฒ๐ฑ ๐ฎ ๐ฑ๐ฒ๐ป๐๐ฒ ๐ฎ๐ป๐ฑ ๐ต๐ถ๐ด๐ต๐น๐ ๐ฝ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฎ๐น ๐ฟ๐ฒ๐ฝ๐ผ๐ฟ๐ ๐ผ๐ป ๐ต๐ผ๐ ๐๐ผ ๐ฏ๐๐ถ๐น๐ฑ ๐ฒ๐ณ๐ณ๐ฒ๐ฐ๐๐ถ๐๐ฒ ๐๐ ๐ฎ๐ด๐ฒ๐ป๐๐ โ ๐ฝ๐ฎ๐ฐ๐ธ๐ฒ๐ฑ ๐๐ถ๐๐ต ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐ถ๐ป๐๐ถ๐ด๐ต๐๐ ๐ณ๐ฟ๐ผ๐บ ๐ฟ๐ฒ๐ฎ๐น-๐๐ผ๐ฟ๐น๐ฑ ๐ฑ๐ฒ๐ฝ๐น๐ผ๐๐บ๐ฒ๐ป๐๐: โฌ๏ธ Not just marketing, BUT a real, practical blueprint for developers and teams building AI agents that actually work. It explains how Claude Code (tool for agentic coding) can function as a software developer: writing, reviewing, testing, and even managing Git workflows autonomously. BUT in my view: The principles and patterns described in this document are not Claude-specific. You can apply them to any coding agent โ from OpenAIโs Codex to Goose, Aider, or even tools like Cursor and GitHub Copilot Workspace. ๐๐ฒ๐ฟ๐ฒ ๐ฎ๐ฟ๐ฒ 7 ๐ธ๐ฒ๐ ๐ถ๐ป๐๐ถ๐ด๐ต๐๐ ๐ณ๐ผ๐ฟ ๐ฏ๐๐ถ๐น๐ฑ๐ถ๐ป๐ด ๐ฏ๐ฒ๐๐๐ฒ๐ฟ ๐๐ ๐ฎ๐ด๐ฒ๐ป๐๐ โ ๐๐ต๐ฎ๐ ๐๐ผ๐ฟ๐ธ ๐ถ๐ป ๐๐ต๐ฒ ๐ฟ๐ฒ๐ฎ๐น ๐๐ผ๐ฟ๐น๐ฑ: โฌ๏ธ 1. ๐๐ด๐ฒ๐ป๐ ๐ฑ๐ฒ๐๐ถ๐ด๐ป โ ๐ท๐๐๐ ๐ฝ๐ฟ๐ผ๐บ๐ฝ๐๐ถ๐ป๐ด โ Itโs not about clever prompts. Itโs about building structured workflows โ where the agent can reason, act, reflect, retry, and escalate. Think of agents like software components: stateless functions wonโt cut it. 2. ๐ ๐ฒ๐บ๐ผ๐ฟ๐ ๐ถ๐ ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ โ The way you manage and pass context determines how useful your agent becomes. Using summaries, structured files, project overviews, and scoped retrieval beats dumping full files into the prompt window. 3. ๐ฃ๐น๐ฎ๐ป๐ป๐ถ๐ป๐ด ๐ถ๐๐ปโ๐ ๐ผ๐ฝ๐๐ถ๐ผ๐ป๐ฎ๐น โ You canโt expect an agent to solve multi-step problems without an explicit process. Patterns like plan > execute > review, tool use when stuck, or structured reflection are necessary. And they apply to all models, not just Claude. 4. ๐ฅ๐ฒ๐ฎ๐น-๐๐ผ๐ฟ๐น๐ฑ ๐ฎ๐ด๐ฒ๐ป๐๐ ๐ป๐ฒ๐ฒ๐ฑ ๐ฟ๐ฒ๐ฎ๐น-๐๐ผ๐ฟ๐น๐ฑ ๐๐ผ๐ผ๐น๐ โ Shell access. Git. APIs. Tool plugins. The agents that actually get things done use tools โ not just language. Design your agents to execute, not just explain. 5. ๐ฅ๐ฒ๐๐ฐ๐ ๐ฎ๐ป๐ฑ ๐๐ผ๐ง ๐ฎ๐ฟ๐ฒ ๐๐๐๐๐ฒ๐บ ๐ฝ๐ฎ๐๐๐ฒ๐ฟ๐ป๐, ๐ป๐ผ๐ ๐บ๐ฎ๐ด๐ถ๐ฐ ๐๐ฟ๐ถ๐ฐ๐ธ๐ โ Donโt just ask the model to โthink step by step.โ Build systems that enforce that structure: reasoning before action, planning before code, feedback before commits. 6. ๐๐ผ๐ปโ๐ ๐ฐ๐ผ๐ป๐ณ๐๐๐ฒ ๐ฎ๐๐๐ผ๐ป๐ผ๐บ๐ ๐๐ถ๐๐ต ๐ฐ๐ต๐ฎ๐ผ๐ โ Autonomous agents can cause damage โ fast. Define scopes, boundaries, fallback behaviors. Controlled autonomy > random retries. 7. ๐ง๐ต๐ฒ ๐ฟ๐ฒ๐ฎ๐น ๐๐ฎ๐น๐๐ฒ ๐ถ๐ ๐ถ๐ป ๐ผ๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป โ A good agent isnโt just a wrapper around an LLM. Itโs an orchestrator: of logic, memory, tools, and feedback. And if youโre scaling to multi-agent setups โ orchestration is everything. Check the comments for the original material! Enjoy! Save ๐พ โ React ๐ โ Share โป๏ธ & follow for everything related to AI Agents!
๐ง๐ต๐ถ๐ ๐ถ๐ ๐๐ต๐ฒ ๐ฟ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐ ๐๐ถ๐๐ต ๐ ๐ต๐ฎ๐ฑ ๐๐ต๐ฒ๐ป ๐ ๐๐๐ฎ๐ฟ๐๐ฒ๐ฑ ๐ฏ๐๐ถ๐น๐ฑ๐ถ๐ป๐ด ๐๐ ๐ฎ๐ด๐ฒ๐ป๐๐! โฌ๏ธ Built together with Rakesh Gohel (aka Mr. AI Agent) โ and now yours! We broke it down into 7 essential steps to go from zero to scalable, production-ready agents: 1. ๐ฃ๐ถ๐ฐ๐ธ ๐ฎ๐ป ๐๐๐ โ Choose a model that reasons well, supports step-by-step logic, and gives consistent outputs. Tip: Llama, Claude Opus, or Mistral are great for open-weight setups. 2. ๐๐๐ถ๐น๐ฑ ๐๐ต๐ฒ ๐๐ด๐ฒ๐ป๐โ๐ ๐๐ผ๐ด๐ถ๐ฐ โ Should it reflect before answering? Plan or act directly? What if it gets stuck? Start simple with ReAct or PlanโthenโExecute. Donโt overcomplicate. 3. ๐ช๐ฟ๐ถ๐๐ฒ ๐ถ๐๐ ๐ข๐ฝ๐ฒ๐ฟ๐ฎ๐๐ถ๐ป๐ด ๐๐ป๐๐๐ฟ๐๐ฐ๐๐ถ๐ผ๐ป๐ โ Define how it should respond, when to use tools, and what formats to reply in. Reusable prompt templates are your friend here โ they scale better than hardcoded flows. 4. ๐๐ฑ๐ฑ ๐ ๐ฒ๐บ๐ผ๐ฟ๐ โ LLMs forget. Your agent canโt. Use sliding windows, summaries, or memory frameworks like MemGPT or ZepAI to persist key facts and long-term context. 5. ๐๐ผ๐ป๐ป๐ฒ๐ฐ๐ ๐ง๐ผ๐ผ๐น๐ ๐ฎ๐ป๐ฑ ๐๐ฃ๐๐ โ Let the agent do things: query data, call systems, fetch information. Just be explicit about what tools exist and when to use them. 6. ๐๐ถ๐๐ฒ ๐ถ๐ ๐ฎ ๐๐ผ๐ฏ Bad prompt: โBe helpful.โ Good prompt: โSummarize customer feedback and suggest improvements.โ Narrow scope wins. The tighter the job, the smarter the agent. 7. ๐ฆ๐ฐ๐ฎ๐น๐ฒ ๐๐ผ ๐ ๐๐น๐๐ถ-๐๐ด๐ฒ๐ป๐ ๐ง๐ฒ๐ฎ๐บ๐ โOne gathers data. One interprets. One formats results. You donโt need a super-agent. You need a smart team โ built for specific tasks. ๐ข๐ป๐ฒ ๐ถ๐บ๐ฎ๐ด๐ฒ. ๐ฆ๐ฒ๐๐ฒ๐ป ๐๐๐ฒ๐ฝ๐. ๐๐ป๐ณ๐ถ๐ป๐ถ๐๐ฒ ๐๐๐ฒ ๐ฐ๐ฎ๐๐ฒ๐! From solo agents to orchestration-ready systems โ this is how you scale with intent. Image below. Save it. Use it. You can find more info in the comments! (Note: The entire roadmap is not exhaustive and can differ according to different use cases) โป๏ธ Share this to help your network level up.
Boston Consulting Group (BCG) ๐ท๐๐๐ ๐ฑ๐ฟ๐ผ๐ฝ๐ฝ๐ฒ๐ฑ ๐๐ต๐ฒ๐ถ๐ฟ ๐น๐ฎ๐๐ฒ๐๐ ๐ฃ๐ข๐ฉ ๐ผ๐ป ๐๐ ๐๐ด๐ฒ๐ป๐๐ ๐ฎ๐ป๐ฑ ๐๐ต๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น ๐๐ผ๐ป๐๐ฒ๐ ๐ ๐ฃ๐ฟ๐ผ๐๐ผ๐ฐ๐ผ๐น (๐ ๐๐ฃ)! The paper unpacks how autonomous agents are evolving, where they are already delivering real value, and why protocols like MCP (Model Context Protocol) and A2A (Agent-to-Agent Communication) are ๐๐ฆ๐ฆ๐๐ก๐ง๐๐๐ to scaling them securely and reliably across enterprises. If you are looking for an insightful read on why the real disruptive technology isn't AI, but AI Agents, this is a great paper! ๐๐ฒ๐ฟ๐ฒ ๐ฎ๐ฟ๐ฒ ๐๐ต๐ฒ ๐๐ฒ๐๐ฒ๐ป ๐ธ๐ฒ๐ ๐๐ฎ๐ธ๐ฒ๐ฎ๐๐ฎ๐๐: 1. ๐๐๐๐ผ๐ป๐ผ๐บ๐ผ๐๐ ๐๐ด๐ฒ๐ป๐๐ ๐๐ฟ๐ฒ ๐ ๐ผ๐๐ถ๐ป๐ด ๐๐ฟ๐ผ๐บ ๐๐ผ๐ป๐ฐ๐ฒ๐ฝ๐ ๐๐ผ ๐ฅ๐ฒ๐ฎ๐น๐ถ๐๐: โ Early deployments are already delivering 30โ90% improvements in speed, productivity, and cost across coding, compliance, and supply chain domains. 2. ๐ ๐๐ฃ ๐๐ ๐๐ฒ๐ฐ๐ผ๐บ๐ถ๐ป๐ด ๐๐ต๐ฒ ๐๐ฎ๐ฐ๐ธ๐ฏ๐ผ๐ป๐ฒ ๐ผ๐ณ ๐ฆ๐ฐ๐ฎ๐น๐ฎ๐ฏ๐น๐ฒ ๐๐ด๐ฒ๐ป๐๐: โ The Model Context Protocol (MCP) is the new open standard adopted by Anthropic, OpenAI, Microsoft, Google, and Amazon to expose tools, prompts, and resources reliably. 3. ๐๐ด๐ฒ๐ป๐ ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ ๐๐ ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฒ๐๐๐ถ๐ป๐ด ๐ฅ๐ฎ๐ฝ๐ถ๐ฑ๐น๐: โ Agents today can automate tasks up to one hour long โ and this limit is doubling every seven months, pushing toward multi-day autonomous workflows by the end of the decade. 4. ๐๐ด๐ฒ๐ป๐ ๐๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ๐ ๐ ๐๐๐ ๐๐ฒ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐-๐๐ถ๐ฟ๐๐: โ Security challenges grow as agents gain system access. OAuth, RBAC, permission isolation, eval-driven development, and real-time monitoring are mandatory to deploy agents safely. 5. ๐ง๐ต๐ฒ ๐ฅ๐ถ๐๐ฒ ๐ผ๐ณ ๐๐ด๐ฒ๐ป๐-๐ข๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐: โ Platforms like Azure Foundry, Vertex AI, Bedrock Agents, and Lindy are positioning themselves as the orchestration layer to create, manage, and scale enterprise agent ecosystems. 6. ๐๐ฟ๐ผ๐บ ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐ ๐๐ผ ๐๐๐น๐น๐ ๐๐๐๐ผ๐ป๐ผ๐บ๐ผ๐๐ ๐๐ด๐ฒ๐ป๐๐: โ Enterprises are shifting from prompt chaining (rigid workflows) to fully autonomous agents capable of observing, reasoning, and acting dynamically based on real-world feedback. 7. ๐ ๐๐ฃ ๐ฎ๐ป๐ฑ ๐2๐ ๐ช๐ถ๐น๐น ๐๐ฒ๐ณ๐ถ๐ป๐ฒ ๐๐ต๐ฒ ๐๐ด๐ฒ๐ป๐ ๐๐ฐ๐ผ๐ป๐ผ๐บ๐: โ MCP connects agents to tools and data. A2A (Agent-to-Agent communication) will enable agents to negotiate, collaborate, and coordinate across systems โ forming true multi-agent networks. The agent economy is currently buildโ with real protocols, real deployments, and real technical foundations. Understanding it today means shaping the competitive advantage of tomorrow! You can download the document below! ENJOY!
๐๐ผ๐ปโ๐ ๐ฑ๐ฒ๐๐ฒ๐น๐ผ๐ฝ ๐ฎ๐ป ๐๐ ๐ฆ๐๐ฟ๐ฎ๐๐ฒ๐ด๐ ๐๐ถ๐๐ต๐ผ๐๐ ๐ฝ๐ฎ๐ฟ๐ฎ๐น๐น๐ฒ๐น ๐ฝ๐ฎ๐๐ต๐ถ๐ป๐ด ๐๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐๐ฟ๐ฎ๐๐ฒ๐ด๐! โฌ๏ธ And donโt build your AI strategy in pure isolation. It seems to me that there are more and more enterprise AI roadmaps or AI-first company roadmaps. And yes, many of these strategies are well-informed, ambitious, and technically promising. But one foundational issue keeps surfacing: a lack of readiness in the underlying data infrastructure. AI โ whether applied or generative โ cannot deliver value without a solid, accessible, and trusted data ecosystem. And yet, many organizations are still underinvesting in this area, treating data as a side concern rather than the foundation it is. If your data landscape is fragmented, inaccessible, or of poor quality, no AI model โ no matter how advanced โ will produce meaningful results. ๐๐ฒ๐ฟ๐ฒ ๐ฎ๐ฟ๐ฒ ๐๐ต๐ฟ๐ฒ๐ฒ ๐ฐ๐ผ๐ป๐ฐ๐ฟ๐ฒ๐๐ฒ ๐๐๐ฒ๐ฝ๐ ๐ฒ๐ป๐๐ฒ๐ฟ๐ฝ๐ฟ๐ถ๐๐ฒ๐ ๐ฐ๐ฎ๐ป ๐๐ฎ๐ธ๐ฒ ๐๐ผ ๐ฏ๐ฒ๐๐๐ฒ๐ฟ ๐ฎ๐น๐ถ๐ด๐ป ๐๐ต๐ฒ๐ถ๐ฟ ๐ฑ๐ฎ๐๐ฎ ๐ฎ๐ป๐ฑ ๐๐ ๐๐๐ฟ๐ฎ๐๐ฒ๐ด๐ถ๐ฒ๐: โฌ๏ธ 1. ๐๐ฒ๐๐ถ๐ด๐ป ๐ฎ๐ป ๐ถ๐ป๐๐ฒ๐ด๐ฟ๐ฎ๐๐ฒ๐ฑ ๐ด๐ผ๐๐ฒ๐ฟ๐ป๐ฎ๐ป๐ฐ๐ฒ ๐บ๐ผ๐ฑ๐ฒ๐น. โ Establish a unified governance framework that spans both data management and AI oversight. This ensures consistency across how data is acquired, maintained, and used โ enabling AI systems to operate transparently, compliantly, and effectively. 2. ๐๐ป๐๐ฒ๐๐ ๐ถ๐ป ๐ฎ ๐ฑ๐ฎ๐๐ฎ-๐ณ๐ถ๐ฟ๐๐ ๐ฐ๐๐น๐๐๐ฟ๐ฒ. โ Technology alone wonโt fix fragmented data. Organizations must embed data literacy across functions, prioritize clean and reusable data assets, and ensure cross-functional teams understand the strategic value of data in AI development. 3. ๐๐น๐ถ๐ด๐ป ๐๐ ๐ฎ๐ป๐ฑ ๐ฑ๐ฎ๐๐ฎ ๐๐ฒ๐ฎ๐บ๐ ๐๐ป๐ฑ๐ฒ๐ฟ ๐๐ต๐ฎ๐ฟ๐ฒ๐ฑ ๐ด๐ผ๐ฎ๐น๐. โ Too often, AI initiatives are launched without proper collaboration with data teams. Ensure alignment through shared KPIs, integrated project planning, and clear ownership over the full data-to-AI lifecycle. Take for example GenAI: Both fine-tuning large models and implementing retrieval-augmented generation (RAG) approaches rely on the same prerequisites: high-quality, accessible, well-governed data. ๐๐ถ๐๐ต๐ฒ๐ฟ ๐๐ฎ๐, ๐ป๐ผ ๐ด๐ผ๐ผ๐ฑ ๐ฑ๐ฎ๐๐ฎ = ๐ป๐ผ ๐ด๐ผ๐ผ๐ฑ ๐๐. ๐๐ ๐๐๐ฟ๐ฎ๐๐ฒ๐ด๐ ๐ถ๐ ๐ป๐ผ๐ ๐ท๐๐๐ ๐ฎ ๐๐ฒ๐ฐ๐ต ๐ถ๐ป๐ถ๐๐ถ๐ฎ๐๐ถ๐๐ฒ โ ๐ถ๐โ๐ ๐ฏ๐๐๐ถ๐ป๐ฒ๐๐ ๐๐ฟ๐ฎ๐ป๐๐ณ๐ผ๐ฟ๐บ๐ฎ๐๐ถ๐ผ๐ป. ๐๐ป๐ฑ ๐ถ๐ ๐บ๐๐๐ ๐ฟ๐ฒ๐๐ ๐ผ๐ป ๐ฎ ๐ฑ๐ฎ๐๐ฎ ๐ถ๐ป๐ณ๐ฟ๐ฎ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ ๐๐ต๐ฎ๐โ๐ ๐ฑ๐ฒ๐๐ถ๐ด๐ป๐ฒ๐ฑ ๐๐ผ ๐๐ฐ๐ฎ๐น๐ฒ ๐๐ถ๐๐ต ๐ถ๐. ๐๐ณ ๐๐ผ๐โ๐ฟ๐ฒ ๐ป๐ผ๐ ๐ถ๐ป๐๐ฒ๐๐๐ถ๐ป๐ด ๐ถ๐ป ๐ฏ๐ผ๐๐ต ๐ฎ๐ ๐๐ต๐ฒ ๐๐ฎ๐บ๐ฒ ๐๐ถ๐บ๐ฒ, ๐๐ผ๐โ๐ฟ๐ฒ ๐ป๐ผ๐ ๐ฏ๐๐ถ๐น๐ฑ๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ ๐ถ๐บ๐ฝ๐ฎ๐ฐ๐. ๐๐๐ถ๐น๐ฑ ๐ฏ๐ผ๐๐ต ๐๐๐ฟ๐ฎ๐๐ฒ๐ด๐ถ๐ฒ๐ ๐ถ๐ป ๐๐๐ป๐ฐ. ๐ง๐ต๐ฎ๐โ๐ ๐๐ต๐ฒ๐ฟ๐ฒ ๐ฟ๐ฒ๐ฎ๐น ๐ฒ๐ป๐๐ฒ๐ฟ๐ฝ๐ฟ๐ถ๐๐ฒ ๐๐ฎ๐น๐๐ฒ ๐ถ๐ ๐ฐ๐ฟ๐ฒ๐ฎ๐๐ฒ๐ฑ!
๐๐ผ๐ ๐๐ ๐ช๐ผ๐ฟ๐ธ๐: ๐ง๐ต๐ฒ ๐ฅ๐๐๐ ๐ฑ๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ฐ๐ฒ ๐ฏ๐ฒ๐๐๐ฒ๐ฒ๐ป ๐๐ ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐, ๐๐ด๐ฒ๐ป๐๐, ๐ฎ๐ป๐ฑ ๐ ๐๐ฃ. โฌ๏ธ This image illustrates the difference with surprising clarity. Letโs break it down: 1. (๐๐) ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐: ๐๐ผ๐น๐น๐ผ๐๐ ๐ฐ๐น๐ฒ๐ฎ๐ฟ ๐ถ๐ป๐๐๐ฟ๐๐ฐ๐๐ถ๐ผ๐ป๐ โ An AI workflow is like a recipe. It runs in a fixed order: An email arrives โ the content is summarized โ a task is created โ the plan is sent via Slack. Itโs linear, predictable, and doesnโt adapt. No decisions. No context-awareness. Just automation. 2. ๐๐ ๐๐ด๐ฒ๐ป๐๐: ๐๐ฐ๐ฐ๐ผ๐บ๐ฝ๐น๐ถ๐๐ต ๐ด๐ผ๐ฎ๐น๐ ๐ฎ๐๐๐ผ๐ป๐ผ๐บ๐ผ๐๐๐น๐ โ An AI agent doesnโt need step-by-step instructions. You give it a goal โ for example, โPlan my dayโ โ and it figures out how to get there. It accesses tools, checks your calendar, moves meetings, finds focus time, and adapts the schedule based on what matters. It makes decisions based on context โ not just predefined logic. 3. ๐ ๐๐ฃ: ๐๐ป๐ฎ๐ฏ๐น๐ฒ๐ ๐ฟ๐ฒ๐ฎ๐น ๐ฎ๐๐๐ผ๐ป๐ผ๐บ๐ โ The Model Context Protocol (MCP) is the key enabler. It gives the agent secure, real-time access to apps like Calendar, Notion, Slack, and Perplexity. This unlocks cross-app coordination, memory, and adaptive behavior. Not just running commands โ but reasoning across systems. ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐ ๐ฎ๐๐๐ผ๐บ๐ฎ๐๐ฒ ๐๐๐ฒ๐ฝ๐ โ ๐๐ด๐ฒ๐ป๐๐ ๐ฝ๐๐ฟ๐๐๐ฒ ๐ผ๐๐๐ฐ๐ผ๐บ๐ฒ๐ โ ๐๐ป๐ฑ ๐ ๐๐ฃ ๐ถ๐ ๐๐ต๐ฒ ๐ณ๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป ๐๐ต๐ฎ๐ ๐บ๐ฎ๐ธ๐ฒ๐ ๐๐ต๐ฒ ๐๐ต๐ถ๐ณ๐ ๐ฝ๐ผ๐๐๐ถ๐ฏ๐น๐ฒ!
๐ง๐ต๐ถ๐ป๐ธ๐ถ๐ป๐ด ๐ฎ๐ฏ๐ผ๐๐ ๐ฎ๐ป ๐๐ ๐ฆ๐ง๐ฅ๐๐ง๐๐๐ฌ ๐ณ๐ผ๐ฟ ๐๐ผ๐๐ฟ ๐ฐ๐ผ๐บ๐ฝ๐ฎ๐ป๐? This is one of the clearest roadmap (Gartner) youโll ever get to build your own: โฌ๏ธ 1. ๐๐ ๐ฆ๐๐ฟ๐ฎ๐๐ฒ๐ด๐ ๐๐ผ๐ฎ๐น ๐ฆ๐ฒ๐๐๐ถ๐ป๐ด (๐ง๐ต๐ฒ ๐๐ผ๐ฟ๐ฒ): This is your strategic north star โ where you define your ambition and guide every downstream decision. โข Drivers โ Why are you doing this? Clarifies the business/tech forces pushing AI forward. โข Vision โ Where is this going long-term? Provides inspiration and direction across teams. โข Alignment โ Is everyone rowing in the same direction? Ensures synergy. โข Risks โ What could go wrong? Sets the baseline for governance and responsible AI. โข Adoption โ Who will actually use it? Anticipates friction and enables change management. ๐ This is the master blueprint โ Without this, youโre just building disconnected POCs. No clear target = no impact. 2. ๐๐น๐ถ๐ด๐ป๐ฒ๐ฑ ๐ฆ๐๐ฟ๐ฎ๐๐ฒ๐ด๐ถ๐ฒ๐ (๐ ๐ฎ๐ธ๐ฒ ๐๐ ๐๐ถ๐ ๐ฌ๐ผ๐๐ฟ ๐๐๐๐ถ๐ป๐ฒ๐๐): This is where your AI ambition meets the reality of your broader enterprise. โข Business Strategy โ AI must serve the core business goals โ not exist as a side project. โข IT Strategy โ Ensures your infrastructure can support scalable AI. โข R&D Strategy โ Aligns innovation with AI capabilities and funding priorities. โข D&A Strategy โ Without data strategy, no AI strategy will scale. โข (...) Strategy โ ... ๐ Connect AI to the real levers of power in your organization โ so it doesnโt get siloed or shut down. 3. ๐๐ ๐ข๐ฝ๐ฒ๐ฟ๐ฎ๐๐ถ๐ป๐ด ๐ ๐ผ๐ฑ๐ฒ๐น (๐ ๐ฎ๐ธ๐ฒ ๐๐ ๐ฅ๐ฒ๐ฎ๐น): Once you know what you want to do, this defines how youโll deliver it at scale. โข Governance โ Sets up ethical, legal, and operational oversight from day one. โข Data โ Builds the pipelines and quality foundations for smart AI. โข Engineering โ Equips you with the technical backbone for deployment. โข Technology โ Selects the right tools, platforms, and architecture. โข Literacy โ Ensures the workforce can actually work with AI. ๐ This is your AI engine room โ without it, strategy stays theoretical. 4. ๐๐ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ (๐๐ฒ๐น๐ถ๐๐ฒ๐ฟ ๐๐ต๐ฒ ๐ฉ๐ฎ๐น๐๐ฒ): Now itโs time to build โ but with structure and intent. โข Ideation/Prioritization** โ Surfaces the best use cases, aligned with strategy. โข Use Cases โ Translates goals into concrete applications and MVPs. โข Change Management โ Drives real adoption beyond pilots. โข Value/Cost Management โ Measures success and ensures scalability. ๐ This is where value is realized โ where strategy finally touches the customer and the business. ๐ฌ๐ผ๐๐ฟ ๐๐ ๐๐๐ฟ๐ฎ๐๐ฒ๐ด๐ ๐๐ต๐ผ๐๐น๐ฑ ๐๐ผ๐ฟ๐ธ ๐น๐ถ๐ธ๐ฒ ๐๐ผ๐๐ฟ ๐๐ฒ๐ฐ๐ต ๐๐๐ฎ๐ฐ๐ธ: ๐๐๐น๐น๐ ๐ถ๐ป๐๐ฒ๐ด๐ฟ๐ฎ๐๐ฒ๐ฑ, ๐ฒ๐ป๐ฑ-๐๐ผ-๐ฒ๐ป๐ฑ ๐ฎ๐ป๐ฑ ๐ฏ๐๐ถ๐น๐ ๐๐ผ ๐๐ฐ๐ฎ๐น๐ฒ! ๐๐ผ๐๐ป๐ฑ ๐๐ต๐ถ๐ ๐๐๐ฒ๐ณ๐๐น? Here you can find edge-level insights on AI agents, automation workflows, and enterprise-ready AI stacks. Fully free! Subscribe here: https://lnkd.in/dbf74Y9E
๐ช๐ฒ ๐ป๐ฒ๐ฒ๐ฑ ๐๐ผ ๐บ๐ผ๐๐ฒ ๐ฏ๐ฒ๐๐ผ๐ป๐ฑ ๐ฐ๐ฎ๐น๐น๐ถ๐ป๐ด ๐ฒ๐๐ฒ๐ฟ๐๐๐ต๐ถ๐ป๐ด ๐ฎ๐ป โ๐๐๐ .โ โฌ๏ธ In 2025, the AI landscape has evolved far beyond just large language models. Knowing which model to use for your specific use case โ and how โ is becoming a strategic advantage. Letโs break down the 8 most important model types and what theyโre actually built to do: โฌ๏ธ 1. ๐๐๐ โ ๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น โ Your ChatGPT-style model. Handles text, predicts the next token, and powers 90% of GenAI hype. ๐ Use case: content, code, convos. 2. ๐๐๐ โ ๐๐ฎ๐๐ฒ๐ป๐ ๐๐ผ๐ป๐๐ถ๐๐๐ฒ๐ป๐ฐ๐ ๐ ๐ผ๐ฑ๐ฒ๐น โ Lightweight, diffusion-style models. Fast, quantized, and efficient โ perfect for real-time or edge deployment. ๐ Use case: image generation, optimized inference. 3. ๐๐๐ โ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐๐ฐ๐๐ถ๐ผ๐ป ๐ ๐ผ๐ฑ๐ฒ๐น โ Where LLM meets planning. Adds memory, task breakdown, and intent recognition. ๐ Use case: AI agents, tool use, step-by-step execution. 4. ๐ ๐ผ๐ โ ๐ ๐ถ๐ ๐๐๐ฟ๐ฒ ๐ผ๐ณ ๐๐ ๐ฝ๐ฒ๐ฟ๐๐ โ One model, many minds. Routes input to the right โexpertโ model slice โ dynamic, scalable, efficient. ๐ Use case: high-performance model serving at low compute cost. 5. ๐ฉ๐๐ โ ๐ฉ๐ถ๐๐ถ๐ผ๐ป ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น โ Multimodal beast. Combines image + text understanding via shared embeddings. ๐ Use case: Gemini, GPT-4o, search, robotics, assistive tech. 6. ๐ฆ๐๐ โ ๐ฆ๐บ๐ฎ๐น๐น ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น โ Tiny but mighty. Designed for edge use, fast inference, low latency, efficient memory. ๐ Use case: on-device AI, chatbots, privacy-first GenAI. 7. ๐ ๐๐ โ ๐ ๐ฎ๐๐ธ๐ฒ๐ฑ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น โ The OG foundation model. Predicts masked tokens using bidirectional context. ๐ Use case: search, classification, embeddings, pretraining. 8. ๐ฆ๐๐ โ ๐ฆ๐ฒ๐ด๐บ๐ฒ๐ป๐ ๐๐ป๐๐๐ต๐ถ๐ป๐ด ๐ ๐ผ๐ฑ๐ฒ๐น โ Vision model for pixel-level understanding. Highlights, segments, and understands *everything* in an image. ๐ Use case: medical imaging, AR, robotics, visual agents. Understanding these distinctions is essential for selecting the right model architecture for specific applications, enabling more effective, scalable, and contextually appropriate AI interactions. While these are some of the most prominent specialized AI models, there are many more emerging across language, vision, speech, and robotics โ each optimized for specific tasks and domains. LLM, VLM, MoE, SLM, LCM โ GenAI LAM, MLM, SAM โ Not classic GenAI, but critical building blocks for AI agents, reasoning, and multimodal systems ๐ ๐ฒ๐ ๐ฝ๐น๐ผ๐ฟ๐ฒ ๐๐ต๐ฒ๐๐ฒ ๐ฑ๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐๐ โ ๐ฎ๐ป๐ฑ ๐๐ต๐ฎ๐ ๐๐ต๐ฒ๐ ๐บ๐ฒ๐ฎ๐ป ๐ณ๐ผ๐ฟ ๐ฟ๐ฒ๐ฎ๐น-๐๐ผ๐ฟ๐น๐ฑ ๐๐๐ฒ ๐ฐ๐ฎ๐๐ฒ๐ โ ๐ถ๐ป ๐บ๐ ๐๐ฒ๐ฒ๐ธ๐น๐ ๐ป๐ฒ๐๐๐น๐ฒ๐๐๐ฒ๐ฟ. ๐ฌ๐ผ๐ ๐ฐ๐ฎ๐ป ๐๐๐ฏ๐๐ฐ๐ฟ๐ถ๐ฏ๐ฒ ๐ต๐ฒ๐ฟ๐ฒ ๐ณ๐ผ๐ฟ ๐ณ๐ฟ๐ฒ๐ฒ: https://lnkd.in/dbf74Y9E Kudos for the graphic goes to Generative AI !
๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐ ๐ถ๐ ๐ฐ๐ผ๐บ๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ ๐๐ต๐ฒ ๐ณ๐ถ๐ป๐ฎ๐ป๐ฐ๐ถ๐ฎ๐น ๐๐๐๐๐ฒ๐บ โ ๐ฎ๐ป๐ฑ ๐บ๐ผ๐๐ ๐ฏ๐ฎ๐ป๐ธ๐ ๐ฎ๐ฟ๐ฒ๐ปโ๐ ๐ฟ๐ฒ๐ฎ๐ฑ๐! โฌ๏ธ At IBM, we just released a new report unpacking what happens when autonomous agents hit regulated industries (interesting read also for people from other industries) โ and why financial institutions must rethink governance, architecture, and control from the ground up. Agentic AI isnโt some far-off vision: Itโs already planning, executing, and escalating decisions โ across onboarding, fraud detection, loan approvals, compliance, and more. From the report, these 6 insights stand out:๏ธ โฌ๏ธ 1. ๐๐ฒ๐ด๐ฎ๐ฐ๐ ๐ฐ๐ผ๐ป๐๐ฟ๐ผ๐น๐ ๐๐ผ๐ปโ๐ ๐๐๐ฟ๐๐ถ๐๐ฒ ๐๐ต๐ฒ ๐๐ต๐ถ๐ณ๐: โ When agents start executing KYC flows, approving loans, or detecting fraud โ real-time governance becomes non-negotiable. The paper outlines 30+ control layers and guardrails needed before you go live. 2. ๐ ๐๐น๐๐ถ-๐ฎ๐ด๐ฒ๐ป๐ ๐๐๐๐๐ฒ๐บ๐ ๐ถ๐ป๐๐ฟ๐ผ๐ฑ๐๐ฐ๐ฒ ๐ฐ๐ผ๐ผ๐ฟ๐ฑ๐ถ๐ป๐ฎ๐๐ถ๐ผ๐ป ๐ฟ๐ถ๐๐ธ. โ Principal agents orchestrate task agents and service agents in complex chains. One misaligned goal? You get drift, bias, or worse โ strategic deception. 3. ๐ ๐ฒ๐บ๐ผ๐ฟ๐ ๐ถ๐ ๐ฝ๐ผ๐๐ฒ๐ฟ โ ๐ฎ๐ป๐ฑ ๐น๐ถ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐. โ Unlike stateless systems, agentic AI remembers. It accumulates knowledge and can act on outdated or misaligned goals unless strict reset, audit, and expiration policies are in place, because financial institutions must adhere to strict data retention and usage policies 4. ๐ง๐ต๐ฒ ๐ฏ๐ถ๐ด๐ด๐ฒ๐๐ ๐ฟ๐ถ๐๐ธ๐? ๐๐ฒ๐ฐ๐ฒ๐ฝ๐๐ถ๐ผ๐ป, ๐ฏ๐ถ๐ฎ๐, ๐ฎ๐ป๐ฑ ๐ฑ๐ฎ๐๐ฎ ๐บ๐ถ๐๐๐๐ฒ. โ The report outlines chilling examples: agents hiding intentions, using personas that amplify bias, or misusing PII without oversight. The solution? Real-time monitoring, not post-hoc patching. 5. ๐ง๐ต๐ฒ ๐ฎ๐ด๐ฒ๐ป๐ ๐ฒ๐ฐ๐ผ๐ป๐ผ๐บ๐ ๐ป๐ฒ๐ฒ๐ฑ๐ ๐ฟ๐ฒ๐ด๐ถ๐๐๐ฟ๐ถ๐ฒ๐, ๐ป๐ผ๐ ๐ฑ๐ฎ๐๐ต๐ฏ๐ผ๐ฎ๐ฟ๐ฑ๐. โ Every agent must be tracked like a microservice: with metadata, access rights, capabilities, and audit logs. Think of it as DevOps meets AI Governance. 6. ๐๐ผ๐บ๐ฝ๐น๐ถ๐ฎ๐ป๐ฐ๐ฒ ๐ถ๐ ๐ป๐ผ ๐น๐ผ๐ป๐ด๐ฒ๐ฟ ๐ฑ๐ผ๐ฐ๐๐บ๐ฒ๐ป๐๐ฎ๐๐ถ๐ผ๐ป. ๐๐'๐ ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ. โ โCompliance by designโ isnโt a nice-to-have โ itโs the only way to deploy agents that regulators, auditors, and boards wonโt shut down on day one. ๐ง๐ต๐ฒ ๐ณ๐๐น๐น ๐ฝ๐ฎ๐ฝ๐ฒ๐ฟ ๐ผ๐ณ๐ณ๐ฒ๐ฟ๐ ๐ฎ ๐ฝ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฎ๐น ๐ฏ๐น๐๐ฒ๐ฝ๐ฟ๐ถ๐ป๐ ๐ณ๐ผ๐ฟ ๐๐ต๐ผ๐๐ฒ ๐๐ฒ๐ฟ๐ถ๐ผ๐๐ ๐ฎ๐ฏ๐ผ๐๐ ๐๐ฐ๐ฎ๐น๐ถ๐ป๐ด ๐๐ ๐ถ๐ป ๐ณ๐ถ๐ป๐ฎ๐ป๐ฐ๐ฒ. ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐๐๐๐ฒ๐บ๐ ๐ฎ๐ฟ๐ฒ ๐ฎ๐น๐ฟ๐ฒ๐ฎ๐ฑ๐ ๐ถ๐ป ๐บ๐ผ๐๐ถ๐ผ๐ป โ ๐ฎ๐ป๐ฑ ๐๐ต๐ฒ ๐ฐ๐ต๐ผ๐ถ๐ฐ๐ฒ๐ ๐๐ฒ ๐บ๐ฎ๐ธ๐ฒ ๐ป๐ผ๐ ๐๐ถ๐น๐น ๐ฑ๐ฒ๐๐ฒ๐ฟ๐บ๐ถ๐ป๐ฒ ๐๐ต๐ฒ๐๐ต๐ฒ๐ฟ ๐๐ฒ ๐น๐ฒ๐ฎ๐ฑ ๐๐ต๐ฒ๐ถ๐ฟ ๐ฑ๐ฒ๐๐ถ๐ด๐ป ๐ผ๐ฟ ๐ฟ๐ฒ๐ฎ๐ฐ๐ ๐๐ผ ๐๐ต๐ฒ๐ถ๐ฟ ๐ฐ๐ผ๐ป๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ๐. Full report and commentary in the comments. Enjoy!
๐ข๐ป๐ฒ ๐ผ๐ณ ๐๐ต๐ฒ ๐ ๐ข๐ฆ๐ง ๐ฑ๐ถ๐๐ฐ๐๐๐๐ฒ๐ฑ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป: ๐๐ผ๐ ๐๐ผ ๐ฝ๐ถ๐ฐ๐ธ ๐๐ต๐ฒ ๐ฟ๐ถ๐ด๐ต๐ ๐๐๐ ๐ณ๐ผ๐ฟ ๐๐ผ๐๐ฟ ๐๐๐ฒ ๐ฐ๐ฎ๐๐ฒ? The LLM landscape is booming and choosing the right LLM is now a business decision, not just a tech choice. One-size-fits-all? Forget it. Nearly all enterprises today rely on different models for different use cases and/or industry-specific fine-tuned models. Thereโs no universal โbestโ model โ only the best fit for a given task. The latest LLM landscape (see below) shows how models stack up in capability (MMLU score), parameter size and accessibility โ and the differences REALLY matter. ๐๐ฒ๐'๐ ๐ฏ๐ฟ๐ฒ๐ฎ๐ธ ๐ถ๐ ๐ฑ๐ผ๐๐ป: โฌ๏ธ 1๏ธโฃ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐น๐ถ๐๐ ๐๐. ๐ฆ๐ฝ๐ฒ๐ฐ๐ถ๐ฎ๐น๐ถ๐๐: - Need a broad, powerful AI? GPT-4, Claude Opus, Gemini 1.5 Pro โ great for general reasoning and diverse applications. - Need domain expertise? E.g. IBM Granite or Mistral models (Lightweight & Fast) can be an excellent choice โ tailored for specific industries. 2๏ธโฃ ๐๐ถ๐ด ๐๐. ๐ฆ๐น๐ถ๐บ: - Powerful, large models (GPT-4, Claude Opus, Gemini 1.5 Pro) = great reasoning, but expensive and slow. - Slim, efficient models (Mistral 7B, LLaMA 3,IBM Granite, RWWK models) = faster, cheaper, easier to fine-tune. Perfect for on-device, edge AI, or latency-sensitive applications. 3๏ธโฃ ๐ข๐ฝ๐ฒ๐ป ๐๐. ๐๐น๐ผ๐๐ฒ๐ฑ - Need full control? Open-source models (LLaMA 3, Mistral, Llama) give you transparency and customization. - Want cutting-edge performance? Closed models (GPT-4, Gemini, Claude) still lead in general intelligence. ๐ง๐ต๐ฒ ๐๐ฒ๐ ๐ง๐ฎ๐ธ๐ฒ๐ฎ๐๐ฎ๐? There is no "best" model โ only the best one for your use case, but it's key to understand the differences to make an informed decision: - Running AI in production? Go slim, go fast. - Need state-of-the-art reasoning? Go big, go deep. - Building industry-specific AI? Go specialized and save some money with SLMs. I love seeing how the AI and LLM stack is evolving, offering multiple directions depending on your specific use case. --- โก๏ธ ๐๐ณ ๐๐ผ๐ ๐ณ๐ผ๐๐ป๐ฑ ๐๐ต๐ถ๐ ๐๐๐ฒ๐ณ๐๐น, ๐๐ผ๐โ๐น๐น ๐น๐ผ๐๐ฒ ๐บ๐ ๐ป๐ฒ๐ ๐ป๐ฒ๐๐๐น๐ฒ๐๐๐ฒ๐ฟ. ๐ช๐ฒ๐ฒ๐ธ๐น๐ ๐ฑ๐ฟ๐ผ๐ฝ๐ ๐ผ๐ป ๐๐ ๐ฎ๐ด๐ฒ๐ป๐๐, ๐ฟ๐ฒ๐ฎ๐น-๐๐ผ๐ฟ๐น๐ฑ ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐, ๐ฎ๐ป๐ฑ ๐๐ต๐ฎ๐โ๐ ๐ป๐ฒ๐ ๐. ๐ฌ๐ผ๐ ๐ฐ๐ฎ๐ป ๐๐๐ฏ๐๐ฐ๐ฟ๐ถ๐ฏ๐ฒ ๐ต๐ฒ๐ฟ๐ฒ: https://lnkd.in/dWMsApuD
๐ง๐ต๐ถ๐ Stanford University ๐๐ฒ๐ฏ๐ถ๐ป๐ฎ๐ฟ ๐ฒ๐ ๐ฝ๐น๐ฎ๐ถ๐ป๐ ๐ฝ๐ฒ๐ฟ๐ณ๐ฒ๐ฐ๐๐น๐ ๐ต๐ผ๐ ๐ฎ๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐ ๐๐ผ๐ฟ๐ธ๐ ๐ถ๐ป ๐ผ๐ป๐ฒ ๐ต๐ผ๐๐ฟ. โฌ๏ธ A very short, but on point explanation of the core building blocks of AI Agents. Best of all, it's completely ๐๐ฅ๐๐ to access! ๐๐ฒ๐ ๐๐ฒ๐ด๐บ๐ฒ๐ป๐๐: โฌ๏ธ [00:46] How Language Models actually work [07:00] Prompt engineering tactics that matter [21:07] Why LMs fail โ and where they break [23:26] Retrieval-Augmented Generation (RAG) as a fix [26:48] Tool use & function calling [29:22] Agentic behavior: action-taking LMs [39:19] Planning, reflection, multi-agent workflows [38:15] Real-world use cases: software dev, task automation If youโre investing an hour in AI today โ make it this one. Watch it. Take notes and get ahead. Webinar: https://lnkd.in/dkdCPBUx
๐ข๐ฝ๐ฒ๐ป๐๐ ๐ท๐๐๐ ๐ฝ๐๐ฏ๐น๐ถ๐๐ต๐ฒ๐ฑ ๐๐ต๐ฒ๐ถ๐ฟ ๐ผ๐ณ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ฃ๐ง-4.1 ๐ฝ๐ฟ๐ผ๐บ๐ฝ๐๐ถ๐ป๐ด ๐ด๐๐ถ๐ฑ๐ฒ! It provides a detailed guide on how to steer GPT-4.1 with precision, including examples, tips, and advanced techniques. You can access the full version for free below. โฌ๏ธ ๐๐ป ๐๐๐บ๐บ๐ฎ๐ฟ๐, ๐ต๐ฒ๐ฟ๐ฒ ๐ฎ๐ฟ๐ฒ ๐๐ต๐ฒ ๐ธ๐ฒ๐ ๐ฒ๐น๐ฒ๐บ๐ฒ๐ป๐๐: โ Be Clear with Your Instructions: GPT-4.1 is really good at following directions, but only if you're specific. The more clear and direct your prompt, the better the response. โ Break Down Complex Tasks: If you're working on something complicated, ask GPT-4.1 to โthink step by step.โ It helps the model give more accurate and thoughtful answers. โ Use Structure: If you need to share a lot of info, use clear structureโlike markdown or bullet points. This helps GPT-4.1 understand and organize the info better. โ Format Your Prompts with Clear Sections: Structure your prompts for easier comprehension: - Role and Objective - Instructions (with subcategories) - Reasoning Steps - Output Format - Examples - Final instructions โ Put Important Instructions at the Start and End: For longer prompts, put your key instructions both at the beginning and the end. This helps the model stay on track. โ Guide It with Reminders: If you're designing a workflow or solving a problem, include reminders like โkeep going until itโs fully resolvedโ or โplan carefully before acting.โ This keeps the model focused. โ Use the Token Window Wisely: GPT-4.1 can handle a huge amount of text, but too much at once can slow it down. Be strategic about how much context you provide. โ Balance Internal and External Knowledge: For factual questions, tell GPT-4.1 to either โonly use the provided contextโ or to mix that context with general knowledge. This helps you get the most accurate results. ๐๐ป ๐๐ต๐ผ๐ฟ๐: ๐ง๐ต๐ฒ ๐ธ๐ฒ๐ ๐๐ผ ๐๐๐ถ๐ป๐ด ๐๐ฃ๐ง-4.1 ๐ฒ๐ณ๐ณ๐ฒ๐ฐ๐๐ถ๐๐ฒ๐น๐ ๐ถ๐ ๐ฐ๐น๐ฒ๐ฎ๐ฟ, ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐ฝ๐ฟ๐ผ๐บ๐ฝ๐๐ ๐๐ต๐ฎ๐ ๐ด๐๐ถ๐ฑ๐ฒ ๐ถ๐ ๐๐ผ๐๐ฎ๐ฟ๐ฑ ๐๐ต๐ฒ ๐ฟ๐ถ๐ด๐ต๐ ๐ฎ๐ป๐๐๐ฒ๐ฟ. ๐๐โ๐ ๐ฎ๐น๐น ๐ฎ๐ฏ๐ผ๐๐ ๐ฎ๐๐ธ๐ถ๐ป๐ด ๐๐ต๐ฒ ๐ฟ๐ถ๐ด๐ต๐ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ ๐ถ๐ป ๐๐ต๐ฒ ๐ฟ๐ถ๐ด๐ต๐ ๐๐ฎ๐! Access it here or download it below: https://lnkd.in/dCm6DeFW
๐ฅ๐๐ ๐ถ๐ ๐ป๐ผ ๐น๐ผ๐ป๐ด๐ฒ๐ฟ ๐ท๐๐๐ โ๐ฟ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฒ ๐ฎ๐ป๐ฑ ๐ด๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ฒ" ๐ผ๐ฟ ๐ฎ ๐๐ถ๐ป๐ด๐น๐ฒ ๐ฝ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ. ๐๐โ๐ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ถ๐ป๐ด ๐๐ต๐ฒ ๐ผ๐ฝ๐ฒ๐ฟ๐ฎ๐๐ถ๐ป๐ด ๐๐๐๐๐ฒ๐บ ๐ณ๐ผ๐ฟ ๐ฒ๐ป๐๐ฒ๐ฟ๐ฝ๐ฟ๐ถ๐๐ฒ ๐๐. โฌ๏ธ By early 2025, over 51% of enterprise GenAI deployments use RAG architectures โ up from 31% just a year earlier. And for good reason: itโs powering everything from customer support and legal automation to search and content generation. BUT real-world complexity demands modular, dynamic, and intelligent system architectures โ not simplistic pipelines. What started as a simple retrieval pipeline (Naive RAG) is now evolving into the architectural backbone of large-scale, production-grade reasoning systems. Below is one of the clearest overviews of the evolving RAG design space โ from Naive setups to Agentic multi-system architectures. ๐๐ฒ๐'๐ ๐ฏ๐ฟ๐ฒ๐ฎ๐ธ ๐ถ๐ ๐ฑ๐ผ๐๐ป: โฌ๏ธ ๐ก๐ฎ๐ถ๐๐ฒ ๐ฅ๐๐ โ Retrieve documents, pass them to the LLM, generate an output. - Fast to build - Fragile when faced with ambiguity, long context, or conflicting information ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฒ-๐ฎ๐ป๐ฑ-๐ฅ๐ฒ๐ฟ๐ฎ๐ป๐ธ ๐ฅ๐๐ โ Adds reranking to prioritize the most relevant information before generation. - Improves accuracy and grounding - Reduces risk of hallucinations ๐ ๐๐น๐๐ถ๐บ๐ผ๐ฑ๐ฎ๐น ๐ฅ๐๐ โ Extends retrieval and reasoning to include text, images, video, and audio. - Critical for industries handling unstructured, diverse data types - Unlocks new applications in healthcare, legal, automotive, and manufacturing ๐๐ฟ๐ฎ๐ฝ๐ต ๐ฅ๐๐ โ Incorporates graph databases for structured reasoning across entities and relationships. - Enables explainable AI - Essential for compliance, auditing, supply chain, and knowledge management ๐๐๐ฏ๐ฟ๐ถ๐ฑ ๐ฅ๐๐ โ Blends vector search, keyword search, and graph retrieval strategies. - Maximizes robustness and adaptability across use cases - Balances precision and recall for production environments ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐ฅ๐๐ (๐ฅ๐ผ๐๐๐ฒ๐ฟ) โ Uses agent-based orchestration to dynamically route queries to specialized tools, indexes, or retrieval strategies. - Intelligent query handling - Core enabler for autonomous workflows ๐ ๐๐น๐๐ถ-๐๐ด๐ฒ๐ป๐ ๐ฅ๐๐ โ Multiple agents collaborate, reason, retrieve, and act across distributed systems. - Supports complex planning, tool use, and decision-making - The foundation for enterprise-grade AI orchestration and multi-modal workflows ๐ฅ๐๐ ๐ถ๐๐ปโ๐ ๐ท๐๐๐ ๐ฎ ๐ฝ๐ฎ๐๐๐ฒ๐ฟ๐ป โ ๐ถ๐โ๐ ๐ฏ๐ฒ๐ฐ๐ผ๐บ๐ถ๐ป๐ด ๐๐ต๐ฒ ๐ณ๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป ๐ณ๐ผ๐ฟ ๐๐ฐ๐ฎ๐น๐ฎ๐ฏ๐น๐ฒ, ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป-๐ฟ๐ฒ๐ฎ๐ฑ๐ ๐๐ฒ๐ป๐๐. ๐๐ฎ๐ฐ๐ต ๐ถ๐บ๐ฝ๐น๐ฒ๐บ๐ฒ๐ป๐๐ฎ๐๐ถ๐ผ๐ป ๐๐๐๐น๐ฒ ๐๐ฒ๐ฟ๐๐ฒ๐ ๐ฎ ๐ฑ๐ถ๐๐๐ถ๐ป๐ฐ๐ ๐ฝ๐๐ฟ๐ฝ๐ผ๐๐ฒ โ ๐ณ๐ฟ๐ผ๐บ ๐๐ถ๐บ๐ฝ๐น๐ฒ ๐ฟ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น ๐ฝ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ๐ ๐๐ผ ๐ฐ๐ผ๐บ๐ฝ๐น๐ฒ๐ , ๐บ๐๐น๐๐ถ-๐ฎ๐ด๐ฒ๐ป๐ ๐ฟ๐ฒ๐ฎ๐๐ผ๐ป๐ถ๐ป๐ด ๐๐๐๐๐ฒ๐บ๐. Kudos to Weaviate for this brilliant cheatsheet!
๐ง๐ต๐ฒ ๐ ๐ข๐ฆ๐ง ๐ฑ๐ถ๐๐ฟ๐๐ฝ๐๐ถ๐๐ฒ ๐๐ฒ๐ฐ๐ต๐ป๐ผ๐น๐ผ๐ด๐ ๐ถ๐ ๐ก๐ข๐ง ๐๐, ๐ถ๐'๐ ๐๐ ๐๐ด๐ฒ๐ป๐๐! โฌ๏ธ Because with AI Agents, AI finally gets hands and feet โ and can start working on its own. This is the moment AI stops being a tool โ and starts acting like a team member. ๐ ๐๐ก๐ฌ ๐ผ๐ณ ๐๐ผ๐ ๐ฎ๐๐ธ๐ฒ๐ฑ ๐ณ๐ผ๐ฟ ๐ฎ ๐ฐ๐น๐ฒ๐ฎ๐ฟ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฟ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ! So here it is โ a practical breakdown of what AI Agents are, why they matter, and how to get started. 2025 will be the year AI Agents move from demo to deployment. And those who understand how to build with them โ will define the next era. To help you, I`ve attached a detailed roadmap made in collaboration with Rakesh Gohel (a true expert in the AI agent space!): โฌ๏ธ ๐ ๐๐ฒ๐๐ฒ๐น 1: ๐๐ฎ๐๐ถ๐ฐ๐ ๐ผ๐ณ ๐ ๐ ๐ฎ๐ป๐ฑ ๐๐ฒ๐ป๐๐ - Basics of Python and Typescript Key Concepts to Learn: a. Data types and control structures. b. File I/O operations. c. Introduction to simple networks. - Basics of Machine Learning Key Concepts to Learn: a. Types of Machine Learning (Supervised, Unsupervised, Reinforcement). b. Neural Networks and Deep Learning fundamentals. c. Basics of Reinforcement Learning. - Basics of API Wrappers Key Concepts to Learn: a. Understanding different API types. b. Building GPT-based wrappers. c. Authentication and secure API communication. - Basics of Prompt Engineering Key Concepts to Learn: a. Chain of Thought and Graph of Thought prompting. b. Zero-shot and Few-shot techniques. c. Designing role-based prompts. - Basics of LLMs Key Concepts to Learn: a. Transformer models and MoE (Mixture of Experts). b. Fine-tuning LLMs for custom tasks. c. Understanding context windows. ๐ ๐๐ฒ๐๐ฒ๐น 2: ๐๐ฒ๐ฒ๐ฝ ๐๐ถ๐๐ฒ ๐ถ๐ป๐๐ผ ๐ฅ๐๐๐ ๐ฎ๐ป๐ฑ ๐๐ ๐๐ด๐ฒ๐ป๐๐ - Basics of RAGs Key Concepts to Learn: a. Embeddings and vector databases. b. Retrieval and generation models. - Basics of AI Agents Key Concepts to Learn: a. Different types of agents and their design patterns. b. Tools and agent memory management. - AI Agent Frameworks Key Concepts to Learn: a. Orchestration, planning, and feedback loops. b. Streaming agent workflows. - Multi-Agent Systems Key Concepts to Learn: a. Communication patterns and hand-offs. b. A2A (Agent-to-Agent) Protocols. - Evaluation and Observability Key Concepts to Learn: a. Metrics for evaluation (latency, stress tests, logging). b. Building observability for scalable AI agents. ๐ง๐ต๐ถ๐ ๐ฟ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐๐ถ๐น๐น ๐ต๐ฒ๐น๐ฝ ๐๐ผ๐ ๐บ๐ผ๐๐ฒ ๐บ๐๐ฐ๐ต ๐ณ๐ฎ๐๐๐ฒ๐ฟ ๐ถ๐ป ๐บ๐ฎ๐๐๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ ๐ฎ๐ด๐ฒ๐ป๐๐๐ ๐ฃ๐๐จ๐ฆ: ๐โ๐๐ฒ ๐ฒ๐๐ฒ๐ป ๐ฎ๐๐๐ฎ๐ฐ๐ต๐ฒ๐ฑ ๐ณ๐ฟ๐ฒ๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐ถ๐ป ๐๐ต๐ฒ ๐ฐ๐ผ๐บ๐บ๐ฒ๐ป๐๐ ๐๐ผ ๐ด๐ฒ๐ ๐๐ผ๐ ๐๐๐ฎ๐ฟ๐๐ฒ๐ฑ. --- Save ๐พ โ React ๐ โ Share โป๏ธ & follow for everything related to AI Agent
๐ฅ๐ฒ๐ฎ๐น๐ถ๐๐ ๐ฐ๐ต๐ฒ๐ฐ๐ธ: ๐๐ ๐ฎ๐ด๐ฒ๐ป๐๐ ๐ฎ๐ฟ๐ฒ ๐ก๐ข๐ง ๐ท๐๐๐ ๐ฎ ๐ณ๐ฎ๐ป๐ฐ๐ ๐จ๐ ๐ผ๐๐ฒ๐ฟ ๐๐ต๐ฎ๐๐๐ฃ๐ง. ๐ง๐ต๐ฒ๐ ๐ฎ๐ฟ๐ฒ ๐ฑ๐ฒ๐ฒ๐ฝ๐น๐ ๐ฐ๐ผ๐บ๐ฝ๐น๐ฒ๐ ๐๐๐๐๐ฒ๐บ๐! โฌ๏ธ ๐๐ท๐ฆ๐ณ๐บ๐ฐ๐ฏ๐ฆโ๐ด ๐ต๐ข๐ญ๐ฌ๐ช๐ฏ๐จ ๐ข๐ฃ๐ฐ๐ถ๐ต ๐๐ ๐ข๐จ๐ฆ๐ฏ๐ต๐ด. - "๐๐จ๐ฆ๐ฏ๐ต๐ด ๐ธ๐ช๐ญ๐ญ ๐ณ๐ฆ๐ฑ๐ญ๐ข๐ค๐ฆ ๐ซ๐ฐ๐ฃ๐ด." - "๐๐จ๐ฆ๐ฏ๐ต๐ด ๐ธ๐ช๐ญ๐ญ ๐ข๐ถ๐ต๐ฐ๐ฎ๐ข๐ต๐ฆ ๐ฆ๐ท๐ฆ๐ณ๐บ๐ต๐ฉ๐ช๐ฏ๐จ." - "๐๐จ๐ฆ๐ฏ๐ต๐ด ๐ข๐ณ๐ฆ ๐ต๐ฉ๐ฆ ๐ง๐ถ๐ต๐ถ๐ณ๐ฆ." However, the reality is far more complex. AI agents are not just chat interfaces or simple API calls. These are full-stack engineering beasts that require integration and coordination across multiple layers of technology. The user may see it as simple, but under the hood ("iceberg") it's anything but simple and complex infrastructure. ๐๐ฒ๐'๐ ๐ฏ๐ฟ๐ฒ๐ฎ๐ธ ๐ถ๐ ๐ฑ๐ผ๐๐ป: โฌ๏ธ 1๏ธโฃ ๐๐ฟ๐ผ๐ป๐-๐ฒ๐ป๐ฑ โ The user interface, but thatโs just the surface. 2๏ธโฃ ๐ ๐ฒ๐บ๐ผ๐ฟ๐ โ Managing short-term and long-term context. 3๏ธโฃ ๐๐๐๐ต๐ฒ๐ป๐๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป โ Identity verification, security, and access control. 4๏ธโฃ ๐ง๐ผ๐ผ๐น๐ โ External plugins, search capabilities, integrations. 5๏ธโฃ ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐ข๐ฏ๐๐ฒ๐ฟ๐๐ฎ๐ฏ๐ถ๐น๐ถ๐๐ โ Monitoring, logging, and performance tracking. 6๏ธโฃ ๐๐ด๐ฒ๐ป๐ ๐ข๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป โ Multi-agent coordination, execution, automation. 7๏ธโฃ ๐ ๐ผ๐ฑ๐ฒ๐น ๐ฅ๐ผ๐๐๐ถ๐ป๐ด โ Directing queries to the right AI models. 8๏ธโฃ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป๐ฎ๐น ๐ ๐ผ๐ฑ๐ฒ๐น๐ โ The LLMs that power the agentโs reasoning. 9๏ธโฃ ๐๐ง๐ (๐๐ ๐๐ฟ๐ฎ๐ฐ๐, ๐ง๐ฟ๐ฎ๐ป๐๐ณ๐ผ๐ฟ๐บ, ๐๐ผ๐ฎ๐ฑ) โ Data ingestion and processing pipelines. ๐ ๐๐ฎ๐๐ฎ๐ฏ๐ฎ๐๐ฒ โ Vector stores and structured storage for knowledge retention. 1๏ธโฃ1๏ธโฃ ๐๐ป๐ณ๐ฟ๐ฎ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ/๐๐ฎ๐๐ฒ โ Compute environments and cloud execution. 1๏ธโฃ2๏ธโฃ ๐๐ฃ๐จ/๐๐ฃ๐จ ๐ฃ๐ฟ๐ผ๐๐ถ๐ฑ๐ฒ๐ฟ๐ โ The backbone of AI model execution. In summary, AI agents arenโt just "smart chatbots" โ theyโre full-stack AI systems requiring seamless orchestration across multiple layers. In addition, there are many companies developing similar technologies right now, fueled by hype and funding. I believe that the market wonโt stay this fragmented โ consolidation is inevitable (I believe if you come back to this post in 3 years 70% of the companies below will basically not exist anymore). ๐ง๐ต๐ฒ ๐๐ถ๐ป๐ป๐ฒ๐ฟ๐? ๐ง๐ต๐ผ๐๐ฒ ๐๐ต๐ผ ๐ฏ๐ฟ๐ถ๐ฑ๐ด๐ฒ ๐๐ ๐ฐ๐ผ๐บ๐ฝ๐น๐ฒ๐ ๐ถ๐๐ ๐๐ถ๐๐ต ๐ฟ๐ฒ๐ฎ๐น ๐ฏ๐๐๐ถ๐ป๐ฒ๐๐ ๐๐ฎ๐น๐๐ฒ ๐ฏ๐ ๐บ๐ฎ๐๐๐ฒ๐ฟ๐ถ๐ป๐ด ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐ฐ๐ผ๐บ๐ฝ๐น๐ฒ๐ ๐ถ๐๐ ๐ฎ๐ป๐ฑ ๐ฑ๐ฒ๐น๐ถ๐๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฒ๐ฎ๐บ๐น๐ฒ๐๐ ๐จ๐ซ ๐๐ถ๐บ๐ฝ๐น๐ถ๐ฐ๐ถ๐๐ ๐ณ๐ผ๐ฟ ๐๐๐ฒ๐ฟ๐. Kudos to Rakesh Gohel for this excellent visualization!
๐๐ ๐/๐ข 2025, Google ๐๐ต๐ผ๐๐ฒ๐ฑ ๐๐ ๐๐ต๐ฎ๐ ๐๐-๐ณ๐ถ๐ฟ๐๐ ๐ฅ๐๐๐๐๐ฌ ๐บ๐ฒ๐ฎ๐ป๐. ๐๐ฒ๐ฟ๐ฒโ๐ ๐๐ต๐ฎ๐ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐ฎ๐ป๐ป๐ผ๐๐ป๐ฐ๐ฒ๐ฑ: โฌ๏ธ The company's flagship developer event Google I/O 2025 was held last night in Mountain View, California. ๐ง๐๐๐ฅ: Google is turning Gemini into the AI operating system for everything โ with agents now embedded across Search, Chrome, Workspace, Android, and more. If you donโt have time for the full event, hereโs a curated ๐๐๐ฝ๐ฒ๐ฟ๐ฐ๐๐ of the highlights that really matter. ๐๐ฒ๐ ๐บ๐ผ๐บ๐ฒ๐ป๐๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐/๐ข ๐ฎ๐ฌ๐ฎ๐ฑ: 0:00 ๐๐ป๐๐ฟ๐ผ โ AI-native from the ground up 0:11 ๐๐ฒ๐บ๐ถ๐ป๐ถ ๐ฝ๐น๐ฎ๐๐ ๐ฎ ๐ฃ๐ผ๐ธ๐ฒ๐บ๐ผ๐ป ๐ด๐ฎ๐บ๐ฒ โ memory, reasoning, and code 0:30 ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ฒ๐ฎ๐บ โ Real-time 3D video chat with AI 1:08 ๐๐ผ๐ผ๐ด๐น๐ฒ ๐ ๐ฒ๐ฒ๐ โ Speech-to-speech translation, live 1:27 ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ ๐ฎ๐ฟ๐ถ๐ป๐ฒ๐ฟ โ AI agents that book, plan, filter, decide 2:07 ๐ฃ๐ฒ๐ฟ๐๐ผ๐ป๐ฎ๐น ๐๐ผ๐ป๐๐ฒ๐ ๐ โ Gemini gets memory and task awareness 2:40 ๐๐ฒ๐บ๐ถ๐ป๐ถ ๐ฎ.๐ฑ ๐ฃ๐ฟ๐ผ + ๐๐น๐ฎ๐๐ต โ New SOTA models, LMArena leader 4:57 ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐๐๐๐ฟ๐ฎ โ Multimodal, fast-response agent that sees and hears 5:32 ๐๐ ๐ ๐ผ๐ฑ๐ฒ โ Overlay for restaurants, bookings, prices, events 7:10 ๐ฆ๐ต๐ผ๐ฝ๐ฝ๐ถ๐ป๐ด โ Track, compare, and auto-buy with Google Pay 8:34 ๐๐ฒ๐บ๐ถ๐ป๐ถ ๐๐ถ๐๐ฒ โ Screen sharing + live AI guidance 8:59 ๐๐ฒ๐ฒ๐ฝ ๐ฅ๐ฒ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต ๐๐ด๐ฒ๐ป๐ โ Upload files, get insights 9:12 ๐๐ฎ๐ป๐๐ฎ๐ โ Live, collaborative AI whiteboard 9:31 ๐๐ฒ๐บ๐ถ๐ป๐ถ ๐ถ๐ป ๐๐ต๐ฟ๐ผ๐บ๐ฒ โ AI understands and acts on any webpage 9:51 ๐๐บ๐ฎ๐ด๐ฒ๐ป ๐ฐ โ Next-gen image generation 10:23 ๐ฉ๐ฒ๐ผ ๐ฏ โ Ultra-realistic video model 11:01 ๐๐๐ฟ๐ถ๐ฎ ๐ฎ โ AI-powered music composition 11:56 ๐๐น๐ผ๐๐ โ Multimodal, promptable AI video creation 12:39 ๐๐ป๐ฑ๐ฟ๐ผ๐ถ๐ฑ ๐ซ๐ฅ โ AI-first spatial computing 12:57 ๐ฆ๐ฎ๐บ๐๐๐ป๐ด ๐ ๐ผ๐ผ๐ต๐ฎ๐ป โ Googleโs XR headset revealed 13:16 ๐๐ถ๐๐ฒ ๐ด๐น๐ฎ๐๐๐ฒ๐ ๐ฑ๐ฒ๐บ๐ผ โ Gemini + XR = real-time AI overlay Super insightful and forward-looking: Googleโs AI strategy just went full stack. Even if some of these projects donโt make it past the prototype stage, the direction is obvious: AI is being integrated into everything. LLMs โ Gemini, in this case โ are rapidly becoming the new operating system and everything will be powered by AI Agents across all products. Full keynote: https://lnkd.in/dPFFtyZ9 Supercut: https://lnkd.in/d-eBNGjw Enjoy watching!
๐ง๐ต๐ถ๐ ๐ถ๐ ๐ต๐ผ๐ ๐๐ฒ๐ป๐๐ ๐ณ๐ถ๐ป๐ฑ๐ ๐บ๐ฒ๐ฎ๐ป๐ถ๐ป๐ด ๐ถ๐ป ๐๐ป๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐๐ฒ๐ ๐. โฌ๏ธ And yes it all starts with vector databases โ not magic. This is the mechanism that powers AI Agent memory, RAG and semantic search. And this diagram below? Nails the entire flow โ from raw data to relevant answers. Let's break it down (the explanation shows of how a vector database works โ using the simple example prompt: โWho am I): โฌ๏ธ 1. ๐๐ป๐ฝ๐๐: โ There are two inputs: Data = the source text (docs, chat history, product descriptions...) and the query = the question or prompt youโre asking. These are processed in exactly the same way โ so they can be compared mathematically later. 2. ๐ช๐ผ๐ฟ๐ฑ ๐๐บ๐ฏ๐ฒ๐ฑ๐ฑ๐ถ๐ป๐ด โ Each word (like โhowโ, โareโ, โyouโ) is transformed into a list of numbers โ a word embedding. These word embeddings capture semantic meaning, so that for example "bank" (money) and "finance" land closer than "bank" (river). This turns raw text into numerical signals. 3. ๐ง๐ฒ๐ ๐ ๐๐บ๐ฏ๐ฒ๐ฑ๐ฑ๐ถ๐ป๐ด ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ โ Both data and query go through this stack: - Encoder: Transforms word embeddings based on their context (e.g. transformers like BERT). - Linear Layer: Projects these high-dimensional embeddings into a more compact space. -ReLU Activation: Introduces non-linearity โ helping the model focus on important features. The output? A single text embedding that represents the entire sentence or chunk. 4. ๐ ๐ฒ๐ฎ๐ป ๐ฃ๐ผ๐ผ๐น๐ถ๐ป๐ด โ Now we take the average of all token embeddings โ one clean vector per chunk. This is the "semantic fingerprint" of your text. 5. ๐๐ป๐ฑ๐ฒ๐ ๐ถ๐ป๐ด โ All document vectors are indexed โ meaning theyโre structured for fast similarity search. This is where vector databases like FAISS or Pinecone come in. 6. ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น (๐๐ผ๐ ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐ & ๐๐ฟ๐ด๐บ๐ฎ๐ ) โ When you submit a query.: The query is also embedded and pooled into a vector. The system compares your query to all indexed vectors using dot product โ a measure of similarity. Argmax finds the closest match โ i.e. the most relevant chunk. This is semantic search at work. - Keyword search finds strings. - Vector search finds meaning. 7. ๐ฉ๐ฒ๐ฐ๐๐ผ๐ฟ ๐ฆ๐๐ผ๐ฟ๐ฎ๐ด๐ฒ โ All document vectors live in persistent vector storage โ always ready for future retrieval and use by the LLM. This is basically the database layer behind: - RAG - Semantic search - Agent memory - Enterprise GenAI apps - etc. ๐๐ณ ๐๐ผ๐โ๐ฟ๐ฒ ๐ฏ๐๐ถ๐น๐ฑ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐๐ ๐ โ ๐๐ต๐ถ๐ ๐ถ๐ ๐๐ต๐ฒ ๐ฝ๐ฎ๐๐๐ฒ๐ฟ๐ป ๐๐ผ๐โ๐ฟ๐ฒ ๐ฏ๐๐ถ๐น๐ฑ๐ถ๐ป๐ด ๐ผ๐ป. Kudos to Tom Yeh for this brilliant visualization!
99% ๐ผ๐ณ ๐ฝ๐ฒ๐ผ๐ฝ๐น๐ฒ ๐ด๐ฒ๐ ๐๐ต๐ถ๐ ๐๐ฟ๐ผ๐ป๐ด: ๐ง๐ต๐ฒ๐ ๐๐๐ฒ ๐๐ต๐ฒ ๐๐ฒ๐ฟ๐บ๐ ๐๐ ๐๐ด๐ฒ๐ป๐ ๐ฎ๐ป๐ฑ ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐ ๐ถ๐ป๐๐ฒ๐ฟ๐ฐ๐ต๐ฎ๐ป๐ด๐ฒ๐ฎ๐ฏ๐น๐ โ ๐ฏ๐๐ ๐๐ต๐ฒ๐ ๐ฑ๐ฒ๐๐ฐ๐ฟ๐ถ๐ฏ๐ฒ ๐๐๐ผ ๐ณ๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐น๐ ๐ฑ๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ๐! โฌ๏ธ Letโs clarify it once and for all: โฌ๏ธ 1. ๐๐ ๐๐ด๐ฒ๐ป๐๐: ๐ง๐ผ๐ผ๐น๐ ๐๐ถ๐๐ต ๐๐๐๐ผ๐ป๐ผ๐บ๐, ๐ช๐ถ๐๐ต๐ถ๐ป ๐๐ถ๐บ๐ถ๐๐ โ AI agents are modular, goal-directed systems that operate within clearly defined boundaries. Theyโre built to: * Use tools (APIs, browsers, databases) * Execute specific, task-oriented workflows * React to prompts or real-time inputs * Plan short sequences and return actionable outputs ๐๐ฉ๐ฆ๐บโ๐ณ๐ฆ ๐ฆ๐น๐ค๐ฆ๐ญ๐ญ๐ฆ๐ฏ๐ต ๐ง๐ฐ๐ณ ๐ต๐ข๐ณ๐จ๐ฆ๐ต๐ฆ๐ฅ ๐ข๐ถ๐ต๐ฐ๐ฎ๐ข๐ต๐ช๐ฐ๐ฏ, ๐ญ๐ช๐ฌ๐ฆ: ๐๐ถ๐ด๐ต๐ฐ๐ฎ๐ฆ๐ณ ๐ด๐ถ๐ฑ๐ฑ๐ฐ๐ณ๐ต ๐ฃ๐ฐ๐ต๐ด, ๐๐ฏ๐ต๐ฆ๐ณ๐ฏ๐ข๐ญ ๐ฌ๐ฏ๐ฐ๐ธ๐ญ๐ฆ๐ฅ๐จ๐ฆ ๐ด๐ฆ๐ข๐ณ๐ค๐ฉ, ๐๐ฎ๐ข๐ช๐ญ ๐ต๐ณ๐ช๐ข๐จ๐ฆ, ๐๐ฆ๐ฆ๐ต๐ช๐ฏ๐จ ๐ด๐ค๐ฉ๐ฆ๐ฅ๐ถ๐ญ๐ช๐ฏ๐จ, ๐๐ฐ๐ฅ๐ฆ ๐ด๐ถ๐จ๐จ๐ฆ๐ด๐ต๐ช๐ฐ๐ฏ๐ด But even the most advanced are limited by scope. They donโt initiate. They donโt collaborate. They execute what we ask! 2. ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐: ๐ ๐ฆ๐๐๐๐ฒ๐บ ๐ผ๐ณ ๐ฆ๐๐๐๐ฒ๐บ๐ โ Agentic AI is an architectural leap. Itโs not just one smarter agent โ itโs multiple specialized agents working together toward shared goals. These systems exhibit: * Multi-agent collaboration * Goal decomposition and role assignment * Inter-agent communication via memory or messaging * Persistent context across time and tasks * Recursive planning and error recovery * Distributed orchestration and adaptive feedback Agentic AI systems donโt just follow instructions. They coordinate. They adapt. They manage complexity. ๐๐น๐ข๐ฎ๐ฑ๐ญ๐ฆ๐ด ๐ช๐ฏ๐ค๐ญ๐ถ๐ฅ๐ฆ: ๐ณ๐ฆ๐ด๐ฆ๐ข๐ณ๐ค๐ฉ ๐ต๐ฆ๐ข๐ฎ๐ด ๐ฑ๐ฐ๐ธ๐ฆ๐ณ๐ฆ๐ฅ ๐ฃ๐บ ๐ข๐จ๐ฆ๐ฏ๐ต๐ด, ๐ด๐ฎ๐ข๐ณ๐ต ๐ฉ๐ฐ๐ฎ๐ฆ ๐ฆ๐ค๐ฐ๐ด๐บ๐ด๐ต๐ฆ๐ฎ๐ด ๐ฐ๐ฑ๐ต๐ช๐ฎ๐ช๐ป๐ช๐ฏ๐จ ๐ฆ๐ฏ๐ฆ๐ณ๐จ๐บ/๐ด๐ฆ๐ค๐ถ๐ณ๐ช๐ต๐บ, ๐ด๐ธ๐ข๐ณ๐ฎ๐ด ๐ฐ๐ง ๐ณ๐ฐ๐ฃ๐ฐ๐ต๐ด ๐ช๐ฏ ๐ญ๐ฐ๐จ๐ช๐ด๐ต๐ช๐ค๐ด ๐ฐ๐ณ ๐ข๐จ๐ณ๐ช๐ค๐ถ๐ญ๐ต๐ถ๐ณ๐ฆ ๐ฎ๐ข๐ฏ๐ข๐จ๐ช๐ฏ๐จ ๐ณ๐ฆ๐ข๐ญ-๐ต๐ช๐ฎ๐ฆ ๐ถ๐ฏ๐ค๐ฆ๐ณ๐ต๐ข๐ช๐ฏ๐ต๐บ ๐ง๐ต๐ฒ ๐๐ผ๐ฟ๐ฒ ๐๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ฐ๐ฒ? AI Agents = autonomous tools for single-task execution Agentic AI = orchestrated ecosystems for workflow-level intelligence ๐ก๐ผ๐ ๐น๐ผ๐ผ๐ธ ๐ฎ๐ ๐๐ต๐ฒ ๐ฝ๐ถ๐ฐ๐๐๐ฟ๐ฒ: โฌ๏ธ ๐ข๐ป ๐๐ต๐ฒ ๐น๐ฒ๐ณ๐: a smart thermostat, which can be an AI Agent. It keeps your room at 21ยฐC. Maybe it learns your schedule. But itโs working alone. ๐ข๐ป ๐๐ต๐ฒ ๐ฟ๐ถ๐ด๐ต๐: Agentic AI. A full smart home ecosystem โ weather-aware, energy-optimized, schedule-sensitive. Agents talk to each other. They share data. They make coordinated decisions to optimize your comfort, cost, and security in real time. Thatโs the shift = From pure task automation to goal-driven orchestration. From single-agent logic to collaborative intelligence. This is whatโs coming = This is Agentic AI. And if we confuse โagentโ with โagentic,โ we risk underbuilding for what AI is truly capable of. The Cornell University paper in the comments on this topic is excellent! โฌ๏ธ
๐๐ณ ๐๐ผ๐ ๐ฏ๐๐ถ๐น๐ฑ ๐๐ ๐๐ด๐ฒ๐ป๐ ๐ฎ๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐, ๐๐ผ๐ ๐ก๐๐๐ ๐ง๐ข ๐๐ก๐ข๐ช ๐๐ต๐ถ๐ ๐๐ถ๐ ๐ฑ๐ฒ๐๐ถ๐ด๐ป ๐ฝ๐ฎ๐๐๐ฒ๐ฟ๐ป๐! ๐ ๏ธ AI Agents are evolving fast, opening up many possibilities for a new paradigm of applications. In today's world, we use LLMs mostly in zero-shot mode, in which a model generates final output token by token without revising its work. With an agent workflow, we can ask the LLM to iterate over certain output many times. There are many tools and possibilities for AI agents today, creating both exciting opportunities and a lot of noise. To cut through the confusion, hereโs a framework of six key design patterns you can leverage to build powerful, scalable agentic applications: Letโs break it down: โฌ๏ธ 1. ๐ฅ๐ฒ๐๐ฐ๐ ๐๐ด๐ฒ๐ป๐ Thinks, takes action, looks at the result, repeats. Classic loop: โShould I Google this?โ โ Does it โ Adjusts. โ Used in most AI products today (like basic chat assistants). 2. ๐๐ผ๐ฑ๐ฒ๐๐ฐ๐ ๐๐ด๐ฒ๐ป๐: Runs real code, not just JSON. So instead of saying โcall API X,โ it writes and runs a Python script. โ More powerful. Used in research agents and dev assistants. 3. ๐ ๐ผ๐ฑ๐ฒ๐ฟ๐ป ๐ง๐ผ๐ผ๐น ๐จ๐๐ฒ: Sends tasks to smart APIs (search, cloud, data), and lets them do the heavy lifting. The agent mostly routes and formats info. โ Think: a smart middleman between you and powerful services. 4. ๐ฆ๐ฒ๐น๐ณ-๐ฅ๐ฒ๐ณ๐น๐ฒ๐ฐ๐๐ถ๐ผ๐ป: Agent checks its own work. Did it make a mistake? It catches it, critiques it, and tries again. โ Most AI errors happen **because this step is missing.** 5. ๐ ๐๐น๐๐ถ-๐๐ด๐ฒ๐ป๐ ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐: One agent isnโt doing everything. You have a planner, a researcher, and a writer โ all working together. โ Like a mini team of AIs. More accurate. Less chaos. 6. ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐ฅ๐๐: This is what powers apps like Perplexity. The agent looks stuff up (retrieval), thinks about it, uses tools, and gives you a smarter answer. โ Works with real-time data, not just model memory. ๐จ๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ๐ถ๐ป๐ด ๐๐ ๐ฎ๐ด๐ฒ๐ป๐ ๐ฑ๐ฒ๐๐ถ๐ด๐ป ๐ฝ๐ฎ๐๐๐ฒ๐ฟ๐ป๐ ๐ฐ๐ฎ๐ป ๐ถ๐บ๐ฝ๐ฟ๐ผ๐๐ฒ ๐ฝ๐ฟ๐ผ๐ฏ๐น๐ฒ๐บ-๐๐ผ๐น๐๐ถ๐ป๐ด, ๐ฐ๐ผ๐น๐น๐ฎ๐ฏ๐ผ๐ฟ๐ฎ๐๐ถ๐ผ๐ป, ๐ฎ๐ป๐ฑ ๐ฝ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ, ๐น๐ฒ๐ฎ๐ฑ๐ถ๐ป๐ด ๐๐ผ ๐บ๐ผ๐ฟ๐ฒ ๐๐ผ๐ฝ๐ต๐ถ๐๐๐ถ๐ฐ๐ฎ๐๐ฒ๐ฑ ๐ฎ๐ป๐ฑ ๐ฟ๐ฒ๐น๐ถ๐ฎ๐ฏ๐น๐ฒ ๐๐ ๐ฎ๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐. ๐ฃ๐ฟ๐ผ๐บ๐ฝ๐๐ ๐ฎ๐น๐ผ๐ป๐ฒ ๐๐ผ๐ปโ๐ ๐ด๐ฒ๐ ๐๐ผ๐ ๐๐ผ ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป โ ๐๐๐ ๐ ๐ฎ๐ฟ๐ฒ ๐๐บ๐ฎ๐ฟ๐ โ ๐ฏ๐๐ ๐๐๐ฎ๐๐ถ๐ฐ โ ๐ฆ๐๐๐๐ฒ๐บ๐ ๐๐ถ๐ป. ๐๐ฒ๐๐ถ๐ด๐ป ๐บ๐ฎ๐๐๐ฒ๐ฟ๐. [๐ก๐ผ๐๐ฒ ๐๐ต๐ฎ๐ ๐๐ต๐ฒ๐๐ฒ ๐ฝ๐ฎ๐๐๐ฒ๐ฟ๐ป๐ ๐ฐ๐ฎ๐ป ๐ฏ๐ฒ ๐๐๐ฒ๐ฑ ๐๐ผ๐ด๐ฒ๐๐ต๐ฒ๐ฟ, ๐ป๐ผ๐ ๐ท๐๐๐ ๐ฒ๐ ๐ฐ๐น๐๐๐ถ๐๐ฒ๐น๐.] ๐ ๏ธ These patterns are adapted from the Agentic Design Patterns blog series from Andrew Ng (find more in the comments). Save ๐พ โ React ๐ โ Share โป๏ธ & follow for everything related to AI Agents. Kudos to Rakesh Gohel for this excellent visualization!
๐ช๐ต๐ฎ๐ ๐ฎ๐ฟ๐ฒ ๐๐ต๐ฒ ๐บ๐ผ๐๐ ๐ฐ๐ผ๐บ๐บ๐ผ๐ป ๐๐ ๐ฎ๐ด๐ฒ๐ป๐ ๐๐๐ฒ ๐ฐ๐ฎ๐๐ฒ๐ ๐ถ๐ป 2025? Given the pace of adoption, one thing is clear: In 12 months, every enterprise workflow will involve AI agents. Not might. Not could. Will. So itโs worth taking a closer look at how this is already playing out. Here are some of the most common and impactful AI agent use cases weโre seeing across industries in 2025. Let's break it down: โฌ๏ธ ๐๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐ฅ๐๐: Retrieval-Augmented Generation reimagined. These agents donโt just retrieve knowledge โ they evaluate sources, reason over them, and produce contextually grounded answers. Used for internal knowledge assistants, intelligent documentation, and enterprise Q&A. Examples: IBM watsonx, Perplexity AI, Glean etc. ๐ช๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐ ๐๐๐๐ผ๐บ๐ฎ๐๐ถ๐ผ๐ป ๐๐ด๐ฒ๐ป๐๐: These agents orchestrate tasks across systems. Triggered by APIs, UI actions, or internal events, they can perform multi-step processes without human involvement. Think automated onboarding flows, approvals, or back-office operations. Very easy to build for everybody. Examples: Make.com, Flowise, n8n, Relevance AI etc. ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐๐ด๐ฒ๐ป๐๐: AI-powered development assistants that go beyond code suggestions. These agents can plan, refactor, debug, and even reason across repositories. Ideal for accelerating software engineering teams or bootstrapping prototypes. Examples: Cursor, Roo Code, Windsurf etc. ๐ง๐ผ๐ผ๐น-๐๐ฎ๐๐ฒ๐ฑ ๐๐ด๐ฒ๐ป๐๐: Niche, high-utility agents designed to perform well-defined tasks with specific tools โ from sending emails to querying internal search engines. These agents are easy to deploy and integrate into targeted workflows. Examples: Breeze, Clay etc. ๐๐ผ๐บ๐ฝ๐๐๐ฒ๐ฟ ๐จ๐๐ฒ ๐๐ด๐ฒ๐ป๐๐: The most ambitious โ and most misunderstood. These agents donโt just call APIs. They use the UI. Navigating browsers. Typing into forms. Clicking buttons. Agents that act like humans, powered by models like Claude and GPT-4. ๐ฉ๐ผ๐ถ๐ฐ๐ฒ ๐๐ด๐ฒ๐ป๐๐: Where GenAI meets the phone line. These agents handle support calls, internal queries, and sales outreach... all with voice. Examples: ElevenLabs, Vapi, and others etc. This isnโt theoretical โ itโs already happening. AI agent use cases are rapidly maturing, moving from prototypes to production across industries. And if your strategy still revolves around chatbots, youโre already behind. ๐ง๐ต๐ฒ ๐ป๐ฒ๐ ๐ 12 ๐บ๐ผ๐ป๐๐ต๐ ๐๐ถ๐น๐น ๐ฏ๐ฒ ๐ฑ๐ฒ๐ณ๐ถ๐ป๐ฒ๐ฑ ๐ฏ๐ ๐๐ต๐ผ๐๐ฒ ๐๐ต๐ผ ๐๐ป๐ฑ๐ฒ๐ฟ๐๐๐ฎ๐ป๐ฑ ๐ต๐ผ๐ ๐๐ผ ๐ฑ๐ฒ๐๐ถ๐ด๐ป, ๐ฐ๐ผ๐บ๐ฏ๐ถ๐ป๐ฒ, ๐ฎ๐ป๐ฑ ๐ผ๐ฟ๐ฐ๐ต๐ฒ๐๐๐ฟ๐ฎ๐๐ฒ ๐ฑ๐ถ๐ณ๐ณ๐ฒ๐ฟ๐ฒ๐ป๐ ๐๐๐ฝ๐ฒ๐ ๐ผ๐ณ ๐ฎ๐ด๐ฒ๐ป๐๐ ๐ถ๐ป๐๐ผ ๐ฟ๐ฒ๐ฎ๐น, ๐๐ฐ๐ฎ๐น๐ฎ๐ฏ๐น๐ฒ ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐. ๐ง๐ต๐ถ๐ ๐ถ๐ ๐๐ต๐ฒ๐ฟ๐ฒ ๐ฐ๐ผ๐บ๐ฝ๐ฒ๐๐ถ๐๐ถ๐๐ฒ ๐ฎ๐ฑ๐๐ฎ๐ป๐๐ฎ๐ด๐ฒ ๐๐ถ๐น๐น ๐ฏ๐ฒ ๐ฏ๐๐ถ๐น๐. Kudos to Rakesh Gohel for this excellent visualization!
๐ง๐ต๐ถ๐ ๐ถ๐ ๐ต๐ฎ๐ป๐ฑ๐-๐ฑ๐ผ๐๐ป ๐๐ต๐ฒ ๐๐๐ฆ๐ง ๐ฎ๐ป๐ฑ ๐ฆ๐๐ ๐ฃ๐๐๐ฆ๐ง ๐ถ๐น๐น๐๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐ผ๐ณ ๐๐ ๐๐ผ๐'๐น๐น ๐ฒ๐๐ฒ๐ฟ ๐๐ฒ๐ฒ! โฌ๏ธ A lot of companies picture AI as a straightforward process: Feed in data, sprinkle some AI, and BOOM โ value appears! If only reality were that simple... ๐ ๐๐ฒ๐ฟ๐ฒโ๐ ๐๐ต๐ฒ ๐ฅ๐ฒ๐ฎ๐น ๐ฆ๐๐ผ๐ฟ๐ ๐ผ๐ณ ๐๐: What actually happens behind the scenes is a complex journey that involves: 1๏ธโฃ Data Sourcing, Cleaning, and Feature Engineering 2๏ธโฃ Data Engineering and Modeling 3๏ธโฃ Training, Evaluating, and Tuning Models 4๏ธโฃ Operationalizing AI to ensure it delivers real-world value And letโs not forget the challenges: ๐๐ฒ๐ด๐ฎ๐น, ๐๐๐ต๐ถ๐ฐ๐ฎ๐น, ๐๐ถ๐ฎ๐, ๐ฎ๐ป๐ฑ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐ ๐ฐ๐ผ๐ป๐๐๐ฟ๐ฎ๐ถ๐ป๐๐ that need to be managed every step of the way! AI isn't a magic wand; it's a marathon of meticulous steps! Yes, there's tremendous value in AI. No, it's not as simple as using ChatGPT. #ai #magic #datascience
Content Inspiration, AI, scheduling, automation, analytics, CRM.
Get all of that and more in Taplio.
Try Taplio for free
Sahil Bloom
@sahilbloom
1m
Followers
Izzy Prior
@izzyprior
82k
Followers
Matt Gray
@mattgray1
1m
Followers
Daniel Murray
@daniel-murray-marketing
150k
Followers
Sam G. Winsbury
@sam-g-winsbury
49k
Followers
Shlomo Genchin
@shlomogenchin
49k
Followers
Richard Moore
@richardjamesmoore
105k
Followers
Sabeeka Ashraf
@sabeekaashraf
20k
Followers
Ash Rathod
@ashrathod
73k
Followers
Justin Welsh
@justinwelsh
1m
Followers
Vaibhav Sisinty โ๏ธ
@vaibhavsisinty
451k
Followers
Austin Belcak
@abelcak
1m
Followers
Amelia Sordell ๐ฅ
@ameliasordell
228k
Followers
Wes Kao
@weskao
107k
Followers
Luke Matthews
@lukematthws
188k
Followers
Tibo Louis-Lucas
@thibaultll
6k
Followers