Logo Taplio

Taplio

Brij kishore Pandey's Linkedin Analytics

Get the Linkedin stats of Brij kishore Pandey and many LinkedIn Influencers by Taplio.

Want detailed analytics of your Linkedin Account? Try Taplio for free.

Brij kishore Pandey

open on linkedin

Opinions expressed are solely my own and do not reflect the views of my employer. I am an AI Architect and Principal Engineer with 15+ years of experience building scalable, intelligent systems using Python, Go, Cloud platforms, Databricks, and AI. At ADP, I lead the design and development of cloud-native, microservices-based applications and AI-driven platforms. I architect end-to-end solutions combining ETL pipelines, LLMs, and real-time analytics, collaborating cross-functionally with product, SRE, and security teams to deliver business-critical innovations. As an AI strategist, author, and technology mentor, I specialize in applying Large Language Models, MLOps, and modern AI architectures to solve real-world problems. Iโ€™m passionate about creating value through intelligent automation, empowering teams, and driving enterprise transformation with AI. Core Skills & Expertise AI & ML Generative AI, LLMs, LangChain, LangGraph, LlamaIndex, MLOps, AI-driven Analytics, MLflow, TensorFlow Cloud & Platforms AWS (Lambda, ECS, ElastiCache, DynamoDB, API Gateway), Azure, GCP, Databricks Programming & Frameworks Python, Go, JavaScript | Django, Flask, FastAPI Data Engineering Airflow, Spark, Pandas, NumPy | ETL/ELT Pipeline Architecture Databases RDBMS, NoSQL, GraphDB, Vector DBs DevOps & Architecture Microservices, Docker, CI/CD, API-first Architecture Leadership AI Strategy, Team Mentorship, Cross-functional Collaboration, Technical Roadmapping Tools GitLab, Bitbucket, Jira, Copilot, Postman, Splunk

Check out Brij kishore Pandey's verified LinkedIn stats (last 30 days)

Followers
627,950
Posts
10
Engagements
32,629
Likes
27,567

Brij kishore Pandey's Best Posts (last 30 days)

Use Taplio to search all-time best posts


As we move from LLM-powered chatbots to truly ๐—ฎ๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€, ๐—ฑ๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป-๐—บ๐—ฎ๐—ธ๐—ถ๐—ป๐—ด ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€, understanding ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ becomes non-negotiable. Agentic AI isnโ€™t just about plugging an LLM into a promptโ€”itโ€™s about designing systems that can ๐—ฝ๐—ฒ๐—ฟ๐—ฐ๐—ฒ๐—ถ๐˜ƒ๐—ฒ, ๐—ฝ๐—น๐—ฎ๐—ป, ๐—ฎ๐—ฐ๐˜, ๐—ฎ๐—ป๐—ฑ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป in dynamic environments. Hereโ€™s where most teams struggle:  They underestimate the ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ required to support agent behavior. To build effective AI agents, you need to think across four critical dimensions: 1. ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐˜† & ๐—ฃ๐—น๐—ฎ๐—ป๐—ป๐—ถ๐—ป๐—ด โ€“ Agents should break down goals into executable steps and act without constant human input. 2. ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† & ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ โ€“ Agents need long-term and episodic memory. Vector databases, context windows, and frameworks like Redis/Postgres are foundational. 3. ๐—ง๐—ผ๐—ผ๐—น ๐—จ๐˜€๐—ฎ๐—ด๐—ฒ & ๐—œ๐—ป๐˜๐—ฒ๐—ด๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€“ Real-world agents must invoke APIs, search tools, code execution engines, and more to complete complex tasks. 4. ๐—–๐—ผ๐—ผ๐—ฟ๐—ฑ๐—ถ๐—ป๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—–๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€“ Single-agent systems are powerful, but multi-agent orchestration (planner-executor models, role-based agents) is where scalability emerges. The ecosystem is evolving fastโ€”with frameworks like ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต, ๐—”๐˜‚๐˜๐—ผ๐—š๐—ฒ๐—ป, ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ป, and ๐—–๐—ฟ๐—ฒ๐˜„๐—”๐—œ making it easier to move from prototypes to production. But tools are only part of the story. If you donโ€™t understand concepts like ๐˜๐—ฎ๐˜€๐—ธ ๐—ฑ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป, ๐˜€๐˜๐—ฎ๐˜๐—ฒ๐—ณ๐˜‚๐—น๐—ป๐—ฒ๐˜€๐˜€, ๐—ฟ๐—ฒ๐—ณ๐—น๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป, and ๐—ณ๐—ฒ๐—ฒ๐—ฑ๐—ฏ๐—ฎ๐—ฐ๐—ธ ๐—น๐—ผ๐—ผ๐—ฝ๐˜€, your agents will remain shallow, brittle, and unscalable. The future belongs to those who can ๐—ฐ๐—ผ๐—บ๐—ฏ๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—Ÿ๐—  ๐—ฐ๐—ฎ๐—ฝ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐—ถ๐—ฒ๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—ฟ๐—ผ๐—ฏ๐˜‚๐˜€๐˜ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป. Thatโ€™s where real innovation happens. 2025 will be the year we go from prompting to architecting.


    3k

    Weโ€™re witnessing a massive shift in how AI is evolvingโ€”from being a reactive tool to becoming an active decision-maker. To make sense of this transformation, Iโ€™ve created the ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—ฆ๐˜๐—ฎ๐—ถ๐—ฟ๐—ฐ๐—ฎ๐˜€๐—ฒโ€”a visual framework that outlines the progression from basic AI capabilities to fully autonomous agentic systems. Here's a quick breakdown: โžค ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ†ณ Starts with foundational components like LLMs, embeddings, vector databases, prompt engineering, and API integration. โ†ณ These are the building blocks, helping AI understand context and access external knowledge. โžค ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—บ๐—ฒ๐—ฑ๐—ถ๐—ฎ๐˜๐—ฒ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ†ณ Introduces memory, tool use, multi-step reasoning, and agent orchestration. โ†ณ This is where AI becomes more interactive and capable of handling complex workflows with memory and logic. โžค ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—Ÿ๐—ฎ๐˜†๐—ฒ๐—ฟ โ†ณ Encompasses autonomous planning, agentic workflows, self-learning, and ultimately, fully autonomous agents. โ†ณ Here, AI agents are not just assistingโ€”they're acting independently with minimal human intervention. The future of AI isnโ€™t just smarter modelsโ€”itโ€™s ๐—ถ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐˜ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ that collaborate, learn, and make decisions autonomously. This staircase is not just a roadmapโ€”it's a reflection of where weโ€™re heading in enterprise AI, product development, and autonomous systems. Would love to hear your thoughts: Whatโ€™s the biggest challenge you've faced in climbing this AI maturity curve?


      2k

      As AI evolves from automation to true autonomy, ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ isnโ€™t optional โ€” itโ€™s foundational. Whether you're building a GenAI product, orchestrating autonomous workflows, or designing agentic RAG pipelines, the core question remains: ๐˜ž๐˜ฉ๐˜ข๐˜ต ๐˜ต๐˜บ๐˜ฑ๐˜ฆ ๐˜ฐ๐˜ง ๐˜ข๐˜จ๐˜ฆ๐˜ฏ๐˜ต ๐˜ข๐˜ณ๐˜ฆ ๐˜บ๐˜ฐ๐˜ถ ๐˜ฅ๐˜ฆ๐˜ด๐˜ช๐˜จ๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ง๐˜ฐ๐˜ณ ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ด๐˜บ๐˜ด๐˜ต๐˜ฆ๐˜ฎ? To help you think more clearly about this, I created a visual on the ๐Ÿด ๐—ง๐˜†๐—ฝ๐—ฒ๐˜€ ๐—ผ๐—ณ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€” from simple rule-followers to highly adaptive, reasoning-based LLM-powered agents. Hereโ€™s a breakdown of the intelligence spectrum: โ†ณ ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ ๐—ฅ๐—ฒ๐—ณ๐—น๐—ฒ๐˜… ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ React to current input. No memory. Think: Thermostats or Rule-based chatbots.   โ†ณ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น-๐—•๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—ฅ๐—ฒ๐—ณ๐—น๐—ฒ๐˜… ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ Track internal state and context. Used in bots that respond based on past inputs.   โ†ณ ๐—š๐—ผ๐—ฎ๐—น-๐—•๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ Don't just act โ€” they pursue objectives. Ideal for pathfinding and planning tasks.   โ†ณ ๐—จ๐˜๐—ถ๐—น๐—ถ๐˜๐˜†-๐—•๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ Choose the best option among many using utility functions. Common in recommendation systems.   โ†ณ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ Improve performance over time. Learn from feedback.   โ†ณ ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ Think, plan, act, and adapt โ€” all without human oversight.   โ†ณ ๐—Ÿ๐—Ÿ๐— -๐—•๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ Leverage the reasoning power of large language models to simulate human-like cognition.   โ†ณ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ โ€“ Multiple agents working together to solve problems collaboratively or competitively. Think swarm intelligence or agentic RAG. As we move toward ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€, weโ€™re shifting from ๐˜ต๐˜ฐ๐˜ฐ๐˜ญ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ข๐˜ด๐˜ด๐˜ช๐˜ด๐˜ต to ๐˜ด๐˜บ๐˜ด๐˜ต๐˜ฆ๐˜ฎ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ค๐˜ฐ-๐˜ค๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ฆ โ€” digital workers that can collaborate, reason, and even negotiate. If youโ€™re building in AI, this isnโ€™t just theory โ€” itโ€™s design strategy.


        2k

        Most AI systems today are reactiveโ€”waiting for user prompts and following rigid, predefined workflows. While useful, this limits their ability to handle real-world complexity, uncertainty, and dynamic environments. ๐—˜๐—ป๐˜๐—ฒ๐—ฟ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ. By leveraging the OODA Loop (Observe, Orient, Decide, Act), Agentic AI is designed to think, adapt, and act autonomously, making it a true proactive partner rather than just a tool. ๐—•๐—ฟ๐—ฒ๐—ฎ๐—ธ๐—ถ๐—ป๐—ด ๐——๐—ผ๐˜„๐—ป ๐˜๐—ต๐—ฒ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ At its core, Agentic AI is structured like a decision-making engine: 1. Central Node โ€“ The core intelligence driving decisions 2. Primary Nodes โ€“ The four phases of the OODA Loop 3. Supporting Sub-Nodes โ€“ Handling real-time sensing, context analysis, planning, and feedback loops     ๐—›๐—ผ๐˜„ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—ช๐—ผ๐—ฟ๐—ธ๐˜€ ๐—ถ๐—ป ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป Unlike traditional AI, Agentic AI actively interacts with its environment, continuously updating its knowledge and adjusting its actions. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ ๐Ÿญ: ๐—”๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐—ฉ๐—ฒ๐—ต๐—ถ๐—ฐ๐—น๐—ฒ๐˜€ A self-driving car using Agentic AI doesnโ€™t just react to obstacles but predicts and adapts to road conditions, human behavior, and unexpected hazards in real time. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ ๐Ÿฎ: ๐—”๐—œ-๐——๐—ฟ๐—ถ๐˜ƒ๐—ฒ๐—ป ๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ๐˜€๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜† Instead of waiting for an attack to happen, Agentic AI-powered cybersecurity systems proactively scan, predict, and neutralize threats before they occur. ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ ๐Ÿฏ: ๐—™๐—ถ๐—ป๐—ฎ๐—ป๐—ฐ๐—ถ๐—ฎ๐—น ๐—ง๐—ฟ๐—ฎ๐—ฑ๐—ถ๐—ป๐—ด ๐—•๐—ผ๐˜๐˜€ Unlike rule-based bots, Agentic AI trading systems analyze global markets, detect emerging trends, and dynamically adjust investment strategies. ๐—ž๐—ฒ๐˜† ๐—–๐—ฎ๐—ฝ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐—ถ๐—ฒ๐˜€ ๐—ผ๐—ณ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ โ€ข Autonomous Operation โ€“ Self-driven, goal-oriented AI that adapts to real-time data โ€ข Autonomy Engine โ€“ Self-initiates actions, allocates resources, and optimizes decisions โ€ข Adaptive Learning โ€“ Evolves using reinforcement learning, Bayesian inference, and pattern recognition โ€ข Decision Matrix โ€“ Assesses risks, simulates scenarios, and prioritizes actions โ€ข Ethical Governance โ€“ Ensures AI operates within ethical and regulatory boundaries โ€ข Collaborative AI Ecosystem โ€“ Seamlessly integrates with other AI agents for multi-agent intelligence โ€ข Proactive Intelligence โ€“ Moving AI beyond reactive models to fully autonomous decision-making With Agentic AI, we are entering an era where AI doesn't just respond but thinks, adapts, and acts independently. How do you see Agentic AI reshaping industries and human-AI interaction? This Gif is created by  Manthan Patel


          1k

          Many people think prompting is just about asking the right questionโ€ฆ but ๐˜๐—ต๐—ฒ ๐™๐™ค๐™ฌ matters just as much as the ๐˜ธ๐˜ฉ๐˜ข๐˜ต. Here are ๐—ฎ ๐—ณ๐—ฒ๐˜„ ๐—ฝ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—พ๐˜‚๐—ฒ๐˜€ that can help you go from basic prompts to expert-level interactions with large language models (LLMs): โ†ณ ๐—ญ๐—ฒ๐—ฟ๐—ผ-๐—ฆ๐—ต๐—ผ๐˜ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด โ€“ Just ask, no examples needed. Great for speed, not always for accuracy.  โ†ณ ๐—ข๐—ป๐—ฒ-๐—ฆ๐—ต๐—ผ๐˜ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด โ€“ One example = one big step toward better context.  โ†ณ ๐—™๐—ฒ๐˜„-๐—ฆ๐—ต๐—ผ๐˜ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด โ€“ Give 2-5 examples and watch your model learn patterns fast. โ†ณ ๐—–๐—ต๐—ฎ๐—ถ๐—ป-๐—ผ๐—ณ-๐—ง๐—ต๐—ผ๐˜‚๐—ด๐—ต๐˜ (๐—–๐—ผ๐—ง) โ€“ โ€œThink step-by-step.โ€ Perfect for complex, reasoning-heavy queries.  โ†ณ ๐—ฆ๐—ฒ๐—น๐—ณ-๐—–๐—ผ๐—ป๐˜€๐—ถ๐˜€๐˜๐—ฒ๐—ป๐—ฐ๐˜† โ€“ Sample multiple responses and choose the best. Think consensus-building with AI. โ†ณ ๐—ฅ๐—ผ๐—น๐—ฒ-๐—•๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด โ€“ Want legal advice or a coding buddy? Set the role, get focused answers.  โ†ณ ๐—œ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—ง๐˜‚๐—ป๐—ถ๐—ป๐—ด โ€“ Structured inputs = high precision for tasks like summarization or classification. โ†ณ ๐—ฅ๐—ฒ๐—”๐—ฐ๐˜ (๐—ฅ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด + ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป) โ€“ Let the LLM think, act (e.g., call an API), then think again. Real-time magic.  โ†ณ ๐—ง๐—ฎ๐˜€๐—ธ-๐—ฆ๐—ฝ๐—ฒ๐—ฐ๐—ถ๐—ณ๐—ถ๐—ฐ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐˜€ โ€“ Highly tailored instructions for tasks like sentiment analysis, grading, or data extraction. Whether youโ€™re building an AI-powered product, refining your workflows, or just exploring what's possibleโ€”understanding these techniques can drastically improve ๐—ผ๐˜‚๐˜๐—ฝ๐˜‚๐˜ ๐—พ๐˜‚๐—ฎ๐—น๐—ถ๐˜๐˜†, ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด ๐—ฑ๐—ฒ๐—ฝ๐˜๐—ต, ๐—ฎ๐—ป๐—ฑ ๐˜๐—ฎ๐˜€๐—ธ ๐—ฟ๐—ฒ๐—น๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†. Which prompting style do ๐˜บ๐˜ฐ๐˜ถ use most?  Have you tried mixing multiple techniques together?


            1k

            As we transition from traditional task-based automation to ๐—ฎ๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€, understanding ๐˜ฉ๐˜ฐ๐˜ธ an agent cognitively processes its environment is no longer optional โ€” it's strategic. This diagram distills the mental model that underpins every intelligent agent architecture โ€” from LangGraph and CrewAI to RAG-based systems and autonomous multi-agent orchestration. The Workflow at a Glance 1. ๐—ฃ๐—ฒ๐—ฟ๐—ฐ๐—ฒ๐—ฝ๐˜๐—ถ๐—ผ๐—ป โ€“ The agent observes its environment using sensors or inputs (text, APIs, context, tools). 2. ๐—•๐—ฟ๐—ฎ๐—ถ๐—ป (๐—ฅ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ) โ€“ It processes observations via a core LLM, enhanced with memory, planning, and retrieval components. 3. ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป โ€“ It executes a task, invokes a tool, or responds โ€” influencing the environment. 4. ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด (Implicit or Explicit) โ€“ Feedback is integrated to improve future decisions.     This feedback loop mirrors principles from: โ€ข The ๐—ข๐—ข๐——๐—” ๐—น๐—ผ๐—ผ๐—ฝ (Observeโ€“Orientโ€“Decideโ€“Act) โ€ข ๐—–๐—ผ๐—ด๐—ป๐—ถ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ used in robotics and AI โ€ข ๐—š๐—ผ๐—ฎ๐—น-๐—ฐ๐—ผ๐—ป๐—ฑ๐—ถ๐˜๐—ถ๐—ผ๐—ป๐—ฒ๐—ฑ ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป๐—ถ๐—ป๐—ด in agent frameworks Most AI applications today are still โ€œreactive.โ€ But agentic AI โ€” autonomous systems that operate continuously and adaptively โ€” requires: โ€ข A ๐—ฐ๐—ผ๐—ด๐—ป๐—ถ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—น๐—ผ๐—ผ๐—ฝ for decision-making โ€ข Persistent ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† and contextual awareness โ€ข Tool-use and reasoning across multiple steps โ€ข ๐—ฃ๐—น๐—ฎ๐—ป๐—ป๐—ถ๐—ป๐—ด for dynamic goal completion โ€ข The ability to ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป from experience and feedback    This model helps developers, researchers, and architects ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ฟ๐—น๐˜† ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐˜„๐—ต๐—ฒ๐—ฟ๐—ฒ ๐˜๐—ผ ๐—ฒ๐—บ๐—ฏ๐—ฒ๐—ฑ ๐—ถ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ โ€” and where things tend to break. Whether youโ€™re building agentic workflows, orchestrating LLM-powered systems, or designing AI-native applications โ€” I hope this framework adds value to your thinking. Letโ€™s elevate the conversation around how AI systems ๐˜ณ๐˜ฆ๐˜ข๐˜ด๐˜ฐ๐˜ฏ. Curious to hear how you're modeling cognition in your systems.


              1k

              Most people think of RAG (Retrieval-Augmented Generation) as: ๐˜˜๐˜ถ๐˜ฆ๐˜ณ๐˜บ โ†’ ๐˜๐˜ฆ๐˜ค๐˜ต๐˜ฐ๐˜ณ ๐˜‹๐˜‰ โ†’ ๐˜“๐˜“๐˜” โ†’ ๐˜ˆ๐˜ฏ๐˜ด๐˜ธ๐˜ฆ๐˜ณ But thatโ€™s just step one. In 2025, weโ€™re seeing a shift toward ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฅ๐—”๐—š systemsโ€”where LLMs donโ€™t just retrieve and respond, but also ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป, ๐—ฝ๐—น๐—ฎ๐—ป, ๐—ฎ๐—ป๐—ฑ ๐—ฎ๐—ฐ๐˜. This visual breakdown captures the core idea: โ†’ A query is embedded and used to fetch relevant chunks from a vector DB. โ†’ An ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ leverages those chunks to craft context-aware prompts. โ†’ It can also invoke external tools: โ€ƒ โ€ƒ โ€ข Web Search โ€ƒโ€ƒ โ€ข APIs โ€ƒโ€ƒ โ€ข Internal Databases This unlocks workflows that are: โ€ข Dynamic โ€ข Context-aware โ€ข Action-oriented    It's not just answering โ€” it's deciding ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ผ ๐—ฑ๐—ผ ๐—ป๐—ฒ๐˜…๐˜. Toolkits like ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต, ๐—–๐—ฟ๐—ฒ๐˜„๐—”๐—œ, ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—”๐——๐—ž, and ๐—”๐˜‚๐˜๐—ผ๐—š๐—ฒ๐—ป are making this architecture practical for real-world systems. What tools or techniques are ๐˜บ๐˜ฐ๐˜ถ using to take your LLM apps beyond static chatbots?


                1k

                Lately, Iโ€™ve been getting a lot of questions around the difference between ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ, ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€, and ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ. Hereโ€™s how I usually explain it โ€” without the jargon. ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ This is what most people think of when they hear โ€œAI.โ€ It can write blog posts, generate images, help you code, and more. Itโ€™s like a super-smart assistant โ€” but only when you ask. No initiative. No memory. No goals. Tools like ChatGPT, Claude, and GitHub Copilot fall into this bucket. ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ Now weโ€™re talking action. An AI Agent doesnโ€™t just answer questions โ€” it ๐—ฑ๐—ผ๐—ฒ๐˜€ ๐˜๐—ต๐—ถ๐—ป๐—ด๐˜€. It can: โ€ข Plan tasks โ€ข Use tools โ€ข Interact with APIs โ€ข Loop through steps until the job is done Think of it like a junior teammate that can handle a process from start to finish โ€” with minimal handholding. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ This is where things get interesting. Agentic AI is not just about completing a single task. Itโ€™s about having ๐—ด๐—ผ๐—ฎ๐—น๐˜€, ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜†, and the ability to ๐—ฎ๐—ฑ๐—ฎ๐—ฝ๐˜. Itโ€™s the difference between: "Write me a summary" vs. "Go read 50 research papers, summarize the key trends, update my Notion, and ping me if thereโ€™s anything game-changing." Agentic AI behaves more like a ๐˜๐—ต๐—ถ๐—ป๐—ธ๐—ถ๐—ป๐—ด ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ than a chatbot. It can collaborate, improve over time, and even work alongside other agents. Personally, I think weโ€™re just scratching the surface of what agentic systems can do. Weโ€™re moving from building apps to ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป๐—ถ๐—ป๐—ด ๐—ฎ๐˜‚๐˜๐—ผ๐—ป๐—ผ๐—บ๐—ผ๐˜‚๐˜€ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€. And thatโ€™s a massive shift. Curious to hear from others building in this space โ€” what tools or frameworks are you experimenting with? LangGraph, AutoGen, CrewAI ?


                  7k

                  Weโ€™re witnessing a shift from static models to ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐—ฐ๐—ฎ๐—ป ๐˜๐—ต๐—ถ๐—ป๐—ธ, ๐—ฟ๐—ฒ๐—ฎ๐˜€๐—ผ๐—ป, ๐—ฎ๐—ป๐—ฑ ๐—ฎ๐—ฐ๐˜โ€”not just respond. But with so many disciplines convergingโ€”LLMs, orchestration, memory, planningโ€”how do you ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—ฎ ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น to master it all? Hereโ€™s a ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ to navigate the Agentic AI landscape, designed for developers and builders who want to go beyond surface-level hype: โ†ณ ๐Ÿญ. ๐—ฅ๐—ฒ๐˜๐—ต๐—ถ๐—ป๐—ธ ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ: Move from model outputs to goal-driven autonomy. Understand where Agentic AI fits in the automation stack. โ†ณ ๐Ÿฎ. ๐—š๐—ฟ๐—ผ๐˜‚๐—ป๐—ฑ ๐—ฌ๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐—น๐—ณ ๐—ถ๐—ป ๐—”๐—œ/๐— ๐—Ÿ ๐—™๐˜‚๐—ป๐—ฑ๐—ฎ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น๐˜€: Before agents, thereโ€™s learningโ€”deep learning, reinforcement learning, and the theories powering adaptive behavior. โ†ณ ๐Ÿฏ. ๐—˜๐˜…๐—ฝ๐—น๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐˜๐—ฎ๐—ฐ๐—ธ: Dive into ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ป, ๐—”๐˜‚๐˜๐—ผ๐—š๐—ฒ๐—ป, and ๐—–๐—ฟ๐—ฒ๐˜„๐—”๐—œโ€”frameworks enabling coordination, planning, and tool use. โ†ณ ๐Ÿฐ. ๐—š๐—ผ ๐——๐—ฒ๐—ฒ๐—ฝ ๐˜„๐—ถ๐˜๐—ต ๐—Ÿ๐—Ÿ๐—  ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐—ฎ๐—น๐˜€: Learn how tokenization, embeddings, and memory management drive better reasoning. โ†ณ๐Ÿฑ. ๐—ฆ๐˜๐˜‚๐—ฑ๐˜† ๐— ๐˜‚๐—น๐˜๐—ถ-๐—”๐—ด๐—ฒ๐—ป๐˜ ๐—–๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Agents arenโ€™t lone wolvesโ€”they negotiate, delegate, and synchronize in distributed workflows. โ†ณ๐Ÿฒ. ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† + ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น: Understand how ๐—ฅ๐—”๐—š, vector stores, and semantic indexing turn short-term chatbots into long-term thinkers. โ†ณ๐Ÿณ. ๐——๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป-๐— ๐—ฎ๐—ธ๐—ถ๐—ป๐—ด ๐—ฎ๐˜€ ๐—ฎ ๐—ฆ๐—ธ๐—ถ๐—น๐—น: Build agents with layered planning, feedback loops, and reinforcement-based self-improvement. โ†ณ๐Ÿด. ๐— ๐—ฎ๐—ธ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜๐—ถ๐—ป๐—ด ๐——๐˜†๐—ป๐—ฎ๐—บ๐—ถ๐—ฐ: From few-shot to chain-of-thought, prompt engineering is the new compilerโ€”learn to wield it with intention. โ†ณ๐Ÿต. ๐—ฅ๐—ฒ๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ + ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Agents that improve themselves arenโ€™t science fictionโ€”they're built on adaptive loops and human feedback. โ†ณ๐Ÿญ๐Ÿฌ. ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฒ ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Master hybrid search and scalable retrieval pipelines for real-time, context-rich AI. โ†ณ๐Ÿญ๐Ÿญ. ๐—ง๐—ต๐—ถ๐—ป๐—ธ ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜, ๐—ก๐—ผ๐˜ ๐—๐˜‚๐˜€๐˜ ๐——๐—ฒ๐—บ๐—ผ๐˜€: Production-ready agents need low latency, monitoring, and integration into business workflows. ๐Ÿญ๐Ÿฎ. ๐—”๐—ฝ๐—ฝ๐—น๐˜† ๐˜„๐—ถ๐˜๐—ต ๐—ฃ๐˜‚๐—ฟ๐—ฝ๐—ผ๐˜€๐—ฒ: From copilots to autonomous research assistantsโ€”Agentic AI is already solving real problems in the wild. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—ถ๐˜€๐—ปโ€™๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐˜€๐—บ๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฟ ๐—ผ๐˜‚๐˜๐—ฝ๐˜‚๐˜๐˜€โ€”๐—ถ๐˜โ€™๐˜€ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—ถ๐—ป๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น, ๐—ฝ๐—ฒ๐—ฟ๐˜€๐—ถ๐˜€๐˜๐—ฒ๐—ป๐˜ ๐—ถ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ. If you're serious about building the next wave of intelligent systems, this roadmap is your compass. Curiousโ€”what part of this roadmap are you diving into right now?


                    6k

                    Google Did It Again! Google just launched the ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜ ๐—ž๐—ถ๐˜ (๐—”๐——๐—ž) โ€” a fully open-source framework to build, orchestrate, evaluate, and deploy multi-agent systems. Why this launch matters: โ€ข Create a working multi-agent system in under 100 lines of Python โ€ข Code-first: full control over agent behavior, orchestration, and tools โ€ข Built-in evaluation, debugging tools, and flexible deployment options โ€ข Designed for real-world use cases โ€ข Itโ€™s open-source, with the community in mind from day one    This could become a foundational tool in the agentic AI stack. The GitHub repo is in the comments.


                      4k

                      Want to drive more opportunities from LinkedIn?

                      Content Inspiration, AI, scheduling, automation, analytics, CRM.

                      Get all of that and more in Taplio.

                      Try Taplio for free